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Modèle et chemins contraints



S = {(1, 1), (1,−1), (−1, 1)} ⊂ Z× Z

(S est un modèle)
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S = {(1, 1), (1,−1), (−1, 1)} ⊂ Z× Z

(S est un modèle)

10 pas

Étant donné un modèle S, dénombrer les chemins dans le quadrant de longueur n.

Modèle et chemins contraints
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Sages conseils

Maybe more than a ”trick”, but if you want to investigate a sequence a0, a1, ..., then
look at a generating function such as

∑
anx

n or
∑

an
xn

n! .

Richard Stanley



x2y4t8

modèle S ⊂ Z2 fixé

Série génératrice



x2y4t8

Q(x, y) :=
∑

marche

xiyjtn ∈ Q[x, y]JtK

modèle S ⊂ Z2 fixé

Série génératrice



Exemple Modèle S = {(1, 1), (1,−1), (−1, 1)}

Q(x, y) = x0y0 + txy ·Q(x, y)

+ tx/y ·
(
Q(x, y)− ([y0]Q(x, y))

)
+ ty/x ·

(
Q(x, y)− ([x0]Q(x, y))

)

Équation fonctionnelle
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Équation fonctionnelle
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Cas particulier : petits pas arrière

xyK(x, y)Q(x, y) = xy + ta(x)Q(x, 0) + tb(y)Q(0, y) + tcQ(0, 0)

S ⊂

S(x, y) =
∑

(i,j)∈S xiyj et K(x, y) = 1− tS(x, y)

Équation aux variables catalytiques
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Q(x, y) la série des chemins est-elle :

Rationnelle ?
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Q(x, y) la série des chemins est-elle :

Rationnelle ?

Algébrique ?

D-finie ?

D-algébrique ?

P (x, y, t, Q(x, y)) = 0

Pz(x, y, t, ∂z)(Q(x, y)) = 0 ∀z ∈ {x, y, t}
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∩

∩

∩
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Algébriques

Différentiellement
finis

Différentiellement
algébriques

Hypertranscendants

xyK(x, y)Q(x, y) = xy + a(x)Q(x, 0) + b(y)Q(0, y) + ctQ(0, 0)

Chemins à petits pas, 2008–2018
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Algébriques

Différentiellement
finis

Différentiellement
algébriques

Hypertranscendants

Bousquet-Mélou
Melczer

Mishna

Rechnitzer

Bostan
Kauers

Salvy
Zeilberger

Fayolle
Kurkova

Raschel
Wachtel

Dreyfus

Hardouin

Roques

Singer

Galois aux différences

Probabilités
Calcul formel

Combinatoire énumérative

xyK(x, y)Q(x, y) = xy + a(x)Q(x, 0) + b(y)Q(0, y) + ctQ(0, 0)

Denisov
Analyse

Chemins à petits pas, 2008–2018



1. 2.

Petits pas

Grands pas Genre 0 avec interactions

Plan



1. Chemins à grands pas



S ⊂

xyK(x, y)Q(x, y) = xi0+1yj0+1+a(x)Q(x, 0)+b(y)Q(0, y)+ctQ(0, 0)

Équation fonctionnelle

Cas particulier : petits pas arrière partant du point (i0, j0)
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S ⊂

xyK(x, y)Q(x, y) = xi0+1yj0+1 + A(x) +B(y)

xyK(x, y)Q(x, y) = xi0+1yj0+1+a(x)Q(x, 0)+b(y)Q(0, y)+ctQ(0, 0)

Équation fonctionnelle

⇒ Stratégie d’algébricité de Bernardi, Bousquet-Mélou, Raschel 21

Cas particulier : petits pas arrière partant du point (i0, j0)



Théorème [Popescu 86; Bousquet-Mélou, Jehanne 05] Une équation de la forme

F (x, t) = B(x) + tP (x, t, F (x, t), [x0]F (x, t), [x1]F (x, t), . . . , [xr−1]F (x, t))

(avec B et P des polynômes à coefficients dans C)

admet une unique solution F (x, t) ∈ C(x)[[t]].

De plus, F (x, t) est algébrique sur C(x, t).

Équations d’une variable catalytique



Théorème [Popescu 86; Bousquet-Mélou, Jehanne 05] Une équation de la forme

F (x, t) = B(x) + tP (x, t, F (x, t), [x0]F (x, t), [x1]F (x, t), . . . , [xr−1]F (x, t))

(avec B et P des polynômes à coefficients dans C)

admet une unique solution F (x, t) ∈ C(x)[[t]].

Exemple : Une série F (x, t) de chemins dans un demi plan vérifie une équation de la forme

F (x, t) = 1 +
∑
i

tai(x)[x
i]F (x, t) + tP (x)F (x, t)

⇒ F (x, t) est algébrique

De plus, F (x, t) est algébrique sur C(x, t).

Équations d’une variable catalytique



Invariants de Tutte : du local au global



Soit K(x, y) = 1− tS(x, y) où S(x, y) vérifie [x−1]S(x, y) < 0 et [y−1]S(x, y) < 0.

Invariants de Tutte : du local au global
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Définition [BM23] Soit A = C[[x, y, t]][1/x, 1/y, 1/t], et H1(x, y), H2(x, y) ∈ A. Si

H1 −H2 = K(x, y)U(x, y) avec U(x, y) ∈ A

on écrit H1 ≡ H2. La relation ≡ est compatible avec +, ×.

Invariants de Tutte : du local au global
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on écrit H1 ≡ H2. La relation ≡ est compatible avec +, ×.

Soient I(x) ∈ A et J(y) ∈ A tels que I(x) ≡ J(y), on dit que

Invariants de Tutte : du local au global

(I(x), J(y)) est une paire d’invariants.



Soit K(x, y) = 1− tS(x, y) où S(x, y) vérifie [x−1]S(x, y) < 0 et [y−1]S(x, y) < 0.

Définition [BM23] Soit A = C[[x, y, t]][1/x, 1/y, 1/t], et H1(x, y), H2(x, y) ∈ A. Si

H1 −H2 = K(x, y)U(x, y) avec U(x, y) ∈ A

on écrit H1 ≡ H2. La relation ≡ est compatible avec +, ×.

Soient I(x) ∈ A et J(y) ∈ A tels que I(x) ≡ J(y), on dit que

Invariants de Tutte : du local au global

I(x) = O(x) J(y) = O(y)

alors I(x) = J(y) = 0.

Lemme des invariants [BM23; B. 26+] Si (I(x), J(y)) est une paire d’invariants avec

(I(x), J(y)) est une paire d’invariants.
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Relations entre invariants

∈ C(x, t)× C(y, t)
Inconnus(I1(x), J1(y)) = (1/xv1 + · · ·+O(x), 1/yv

′
1 + · · ·+O(y))

(I2(x), J2(y)) = (1/xv2 + · · ·+O(x), 1/yv
′
2 + · · ·+O(y))



Théorème [B. 26+] Il existe un polynôme P ∈ C[[t]][X,Y ] non nul tel que

Relations entre invariants

∈ C(x, t)× C(y, t)
Inconnus(I1(x), J1(y)) = (1/xv1 + · · ·+O(x), 1/yv

′
1 + · · ·+O(y))

(I2(x), J2(y)) = (1/xv2 + · · ·+O(x), 1/yv
′
2 + · · ·+O(y))

I3(x) := P (I1(x), I2(x)) = O(x) et J3(y) := P (J1(y), J2(y)) = O(y)



Théorème [B. 26+] Il existe un polynôme P ∈ C[[t]][X,Y ] non nul tel que

⇒ Par le lemme des invariants, on a

Relations entre invariants

∈ C(x, t)× C(y, t)
Inconnus(I1(x), J1(y)) = (1/xv1 + · · ·+O(x), 1/yv

′
1 + · · ·+O(y))

(I2(x), J2(y)) = (1/xv2 + · · ·+O(x), 1/yv
′
2 + · · ·+O(y))

P (I1(x), I2(x)) = 0 et P (J1(y), J2(y)) = 0

I3(x) := P (I1(x), I2(x)) = O(x) et J3(y) := P (J1(y), J2(y)) = O(y)



Théorème [B. 26+] Il existe un polynôme P ∈ C[[t]][X,Y ] non nul tel que

⇒ Par le lemme des invariants, on a

Relations entre invariants

∈ C(x, t)× C(y, t)
Inconnus

⇒ Équations d’une variable catalytique sur I1(x) et J1(y)

(I1(x), J1(y)) = (1/xv1 + · · ·+O(x), 1/yv
′
1 + · · ·+O(y))

(I2(x), J2(y)) = (1/xv2 + · · ·+O(x), 1/yv
′
2 + · · ·+O(y))

P (I1(x), I2(x)) = 0 et P (J1(y), J2(y)) = 0

I3(x) := P (I1(x), I2(x)) = O(x) et J3(y) := P (J1(y), J2(y)) = O(y)



Exemple : modèle de Gessel [BeBMRa 21]



xyK(x, y)Q(x, y) = xy − t(y + 1)Q(0, y)− tQ(x, 0) + tQ(0, 0)

Exemple : modèle de Gessel [BeBMRa 21]



xyK(x, y)Q(x, y) = xy − t(y + 1)Q(0, y)− tQ(x, 0) + tQ(0, 0)

Découplage : xy = − 1
x + y

t(y+1) −
K(x,y)
ty(y+1)

(I1(x), J1(y)) := ( 1x + tQ(x, 0)− tQ(0, 0), y
t(y+1) − t(y + 1)Q(0, y))

Exemple : modèle de Gessel [BeBMRa 21]



xyK(x, y)Q(x, y) = xy − t(y + 1)Q(0, y)− tQ(x, 0) + tQ(0, 0)

Découplage : xy = − 1
x + y

t(y+1) −
K(x,y)
ty(y+1)

(I1(x), J1(y)) := ( 1x + tQ(x, 0)− tQ(0, 0), y
t(y+1) − t(y + 1)Q(0, y))

Invariants rationnels
(I2(x), J2(y)) := (− 1

x2 + 1
tx + 2 + x

t − x2, (1+y)2

y + y
t2(1+y)2 )

Exemple : modèle de Gessel [BeBMRa 21]



xyK(x, y)Q(x, y) = xy − t(y + 1)Q(0, y)− tQ(x, 0) + tQ(0, 0)

Découplage : xy = − 1
x + y

t(y+1) −
K(x,y)
ty(y+1)

(I1(x), J1(y)) := ( 1x + tQ(x, 0)− tQ(0, 0), y
t(y+1) − t(y + 1)Q(0, y))

Invariants rationnels
(I2(x), J2(y)) := (− 1

x2 + 1
tx + 2 + x

t − x2, (1+y)2

y + y
t2(1+y)2 )

En éliminant les pôles entre (I1(x), J1(y)) et (I2(x), J2(y)), puis en appliquant le lemme des
invariants, on trouve Px et Py à coefficients rationnels tels que

Px(Q(x, 0), x, t, [x0]Q(x, 0), [x1]Q(x, 0)) = 0

Py(Q(0, y), y, t, [y0]Q(0, y), [y1]Q(0, y)) = 0

Exemple : modèle de Gessel [BeBMRa 21]



xyK(x, y)Q(x, y) = xy − t(y + 1)Q(0, y)− tQ(x, 0) + tQ(0, 0)

Découplage : xy = − 1
x + y

t(y+1) −
K(x,y)
ty(y+1)

(I1(x), J1(y)) := ( 1x + tQ(x, 0)− tQ(0, 0), y
t(y+1) − t(y + 1)Q(0, y))

Invariants rationnels
(I2(x), J2(y)) := (− 1

x2 + 1
tx + 2 + x

t − x2, (1+y)2

y + y
t2(1+y)2 )

En éliminant les pôles entre (I1(x), J1(y)) et (I2(x), J2(y)), puis en appliquant le lemme des
invariants, on trouve Px et Py à coefficients rationnels tels que

Px(Q(x, 0), x, t, [x0]Q(x, 0), [x1]Q(x, 0)) = 0

Py(Q(0, y), y, t, [y0]Q(0, y), [y1]Q(0, y)) = 0

Exemple : modèle de Gessel [BeBMRa 21]

Équations bien fondées + BMJ ⇒ Q(x, 0) et Q(0, y) sont algébriques ⇒ Q(x, y) est algébrique



G :=< Ψ,Φ >

avec Ψ et Φ involutions vérifiant
• Ψ(u, v) = (u, v′) et Φ(u, v) = (u′, v)
• S(Ψ(u, v)) = S(Φ(u, v)) = S(u, v)

Groupe des petits pas [Bousquet-Mélou, Mishna 06]



(x, y)

(x, y x2)

(xy, y x2)

(xy, y)

(x y, x2y)

(x y, y)

(x, y)

(x, x2y)

Ψ Φ

ΨΦ
Ψ(u, v) = (u, v u2)

Φ(u, v) = (u v, v)

Φ ΨΨ

Ψ Φ

G :=< Ψ,Φ >

avec Ψ et Φ involutions vérifiant
• Ψ(u, v) = (u, v′) et Φ(u, v) = (u′, v)
• S(Ψ(u, v)) = S(Φ(u, v)) = S(u, v)

Groupe des petits pas [Bousquet-Mélou, Mishna 06]

Exemple
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(xy, y x2)

(xy, y)

(x y, x2y)

(x y, y)

(x, y)

(x, x2y)

Ψ Φ

ΨΦ
Ψ(u, v) = (u, v u2)

Φ(u, v) = (u v, v)

Φ ΨΨ

Ψ Φ

Découplage
Soit H(x, y) ∈ C(x, y, t) une fraction,
H(x, y) découple si et seulement si
H(x, y)−H(xy, y) +H(xy, x2y) · · · ≡ 0

G :=< Ψ,Φ >

avec Ψ et Φ involutions vérifiant
• Ψ(u, v) = (u, v′) et Φ(u, v) = (u′, v)
• S(Ψ(u, v)) = S(Φ(u, v)) = S(u, v)

Groupe des petits pas [Bousquet-Mélou, Mishna 06]

Exemple



(x, y)

(x, y x2)

(xy, y x2)

(xy, y)

(x y, x2y)

(x y, y)

(x, y)

(x, x2y)

Ψ Φ

ΨΦ
Ψ(u, v) = (u, v u2)

Φ(u, v) = (u v, v)

Φ ΨΨ

Ψ Φ

Découplage
Soit H(x, y) ∈ C(x, y, t) une fraction,
H(x, y) découple si et seulement si
H(x, y)−H(xy, y) +H(xy, x2y) · · · ≡ 0

Invariants rationnels
Soit R(x, y) := x2 + xy2 + x2 + x2y2

alors R(x, y) ≡ I1(x) et R(x, y) ≡ J2(y)

G :=< Ψ,Φ >

avec Ψ et Φ involutions vérifiant
• Ψ(u, v) = (u, v′) et Φ(u, v) = (u′, v)
• S(Ψ(u, v)) = S(Φ(u, v)) = S(u, v)

Groupe des petits pas [Bousquet-Mélou, Mishna 06]

Exemple

paire d’invariants non-constants



(x, y)

(x, y x2)

(xy, y x2)

(xy, y)

(x y, x2y)

(x y, y)

(x, y)

(x, x2y)

Ψ Φ

ΨΦ
Ψ(u, v) = (u, v u2)

Φ(u, v) = (u v, v)

Φ ΨΨ

Ψ Φ

Découplage
Soit H(x, y) ∈ C(x, y, t) une fraction,
H(x, y) découple si et seulement si
H(x, y)−H(xy, y) +H(xy, x2y) · · · ≡ 0

Invariants rationnels
Soit R(x, y) := x2 + xy2 + x2 + x2y2

alors R(x, y) ≡ I1(x) et R(x, y) ≡ J2(y)

Preuves reposant sur ce groupe de
transformations rationnelles, n’existant a
priori que pour les petits pas.

G :=< Ψ,Φ >

avec Ψ et Φ involutions vérifiant
• Ψ(u, v) = (u, v′) et Φ(u, v) = (u′, v)
• S(Ψ(u, v)) = S(Φ(u, v)) = S(u, v)

Groupe des petits pas [Bousquet-Mélou, Mishna 06]

Exemple

paire d’invariants non-constants
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G :=< Ψ,Φ >

avec Ψ et Φ involutions vérifiant
• Ψ(u, v) = (u, v′) et Φ(u, v) = (u′, v)
• S(Ψ(u, v)) = S(Φ(u, v)) = S(u, v)
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G :=< Ψ,Φ >

avec Ψ et Φ involutions vérifiant
• Ψ(u, v) = (u, v′) et Φ(u, v) = (u′, v)
• S(Ψ(u, v)) = S(Φ(u, v)) = S(u, v)

Définition 1 (u, v) ∼ (u′, v′)
ssi

(u′, v′) = Ψ(u, v) ou (u′, v′) = Φ(u, v)
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G :=< Ψ,Φ >

avec Ψ et Φ involutions vérifiant
• Ψ(u, v) = (u, v′) et Φ(u, v) = (u′, v)
• S(Ψ(u, v)) = S(Φ(u, v)) = S(u, v)

Définition 1 (u, v) ∼ (u′, v′)
ssi

(u′, v′) = Ψ(u, v) ou (u′, v′) = Φ(u, v)

Définition 2 (u, v) ∼ (u,′ v′)
ssi

S(u, v) = S(u′, v′) et u = u′ ou v = v′



Orbite des grands pas [Bostan, Bousquet-Mélou, Melczer 18]

G :=< Ψ,Φ >

avec Ψ et Φ involutions vérifiant
• Ψ(u, v) = (u, v′) et Φ(u, v) = (u′, v)
• S(Ψ(u, v)) = S(Φ(u, v)) = S(u, v)

Définition 1 (u, v) ∼ (u′, v′)
ssi

(u′, v′) = Ψ(u, v) ou (u′, v′) = Φ(u, v)

Définition 2 (u, v) ∼ (u,′ v′)
ssi

S(u, v) = S(u′, v′) et u = u′ ou v = v′

• Requiert un groupe
• O = Orbite de (x, y) par G

• Ne requiert pas de groupe
• O = Classe de (x, y) sous ∼



Orbite des grands pas [Bostan, Bousquet-Mélou, Melczer 18]

Définition 2 (u, v) ∼ (u,′ v′)
ssi

S(u, v) = S(u′, v′) et u = u′ ou v = v′

• Ne requiert pas de groupe
• O = Classe de (x, y) sous ∼

(x, x y)

(x, y)

(z, y)

(z, y z)

(xy2z, y z)

(−x, y z)

(−x y2 z,−xyz)

(−x,−xyz)

(−z,−xyz)

O(xy2z, x y) (−z, x y)

(−x y2 z, y)

Exemple :



Structure galoisienne de l’orbite [B., Hardouin 24]



C(t, x, y)

C(t,O)

C(t, x) C(t, y)

kinv = C(t, x) ∩ C(t, y)

C(t)

Structure galoisienne de l’orbite [B., Hardouin 24]

K(x, y, t) = 0



C(t, x, y)

C(t,O)

C(t, x) C(t, y)

kinv = C(t, x) ∩ C(t, y)

C(t)

Gx Gy

Structure galoisienne de l’orbite [B., Hardouin 24]

G :=< Gx, Gy >

K(x, y, t) = 0



C(t, x, y)

C(t,O)

C(t, x) C(t, y)

kinv = C(t, x) ∩ C(t, y)

C(t)

Gx Gy

Structure galoisienne de l’orbite [B., Hardouin 24]

Théorème [B., Hardouin 24] Le groupe G agit
sur O par automorphismes de graphes

σ · (u, v) = (σu, σv)

Cette action est fidèle, transitive et finiment
engendrée.

G :=< Gx, Gy >

K(x, y, t) = 0



Invariants rationnels



Théorème [Fried 78; B., Hardouin 24] On a équivalence entre
• Orbite finie
• Groupe fini
• Existence d’invariants rationnels non constants
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Théorème [Fried 78; B., Hardouin 24] On a équivalence entre
• Orbite finie
• Groupe fini
• Existence d’invariants rationnels non constants

Théorème [B., Hardouin 24]
• Le corps des invariants kinv vaut C(t, f(x)) pour un certain invariant f(x).
• Soit µx(X) =

∏
u:(u,v)∈O(X − u) le polynôme annulateur des coordonnées gauches.

Alors tout coefficient non constant de µx(X) engendre kinv.

Invariants rationnels



µx(Z) = Z6 −
(
x3 + x6 + x4 − x2 − 1

)
t2 + x2

(
x2 − 1

)
t− x3

t2x (x2 + 1)
2 Z5 +

t+ 1

t
Z4

− 2
x6t2 +

(
− t2

2 + 1
2

)
x5 + t (t+ 1)x4 +

(
−t2 − t

)
x2 − (t2−1)x

2 − t2

t2x (x2 + 1)
2 Z3 − t+ 1

t
Z2

−
((
x3 + x6 + x4 − x2 − 1

)
t2 + x2

(
x2 − 1

)
t− x3

)
t2x (x2 + 1)

2 Z − 1

Invariants rationnels : Exemple

K(x, y, t) = 0
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t
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(y4− 1
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2−y−1)t2−t y3+ y2

2

t2y2 Z3

− (t+ 1)

t
Z2 +

(
−t y4 + ty + y3 + t

)
t y2

Z − 1.
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2 Z5 +

t+ 1
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x5 + t (t+ 1)x4 +
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Découplage : Évaluation des 0-châınes



(u1, v1)

(u2, v2)

(u1, v3)

Découplage : Évaluation des 0-châınes



(u1, v1)

(u2, v2)

(u1, v3)

3

−1

4

Découplage : Évaluation des 0-châınes



(u1, v1)

(u2, v2)

(u1, v3)

3

−1

4
c = 3·(u1, v1)+4·(u2, v2)−(u1, v3)

Découplage : Évaluation des 0-châınes



(u1, v1)

(u2, v2)

(u1, v3)

3

−1

4
c = 3·(u1, v1)+4·(u2, v2)−(u1, v3)

Pour H(x, y) une fraction, on définit Hc ∈ C(t,O) par linéarité

Hc(x, y) = 3 ·H(u1, v1) + 4 ·H(u2, v2)−H(u1, v3)

Découplage : Évaluation des 0-châınes



Théorème [B., Hardouin 24]

On peut écrire (x, y) = γx + γy + α, de sorte que pour H(x, y) ∈ C(t, x, y)

Caractérisation du découplage



Théorème [B., Hardouin 24]

On peut écrire (x, y) = γx + γy + α, de sorte que pour H(x, y) ∈ C(t, x, y)
• H découple ssi Hα ≡ 0.

Caractérisation du découplage



Théorème [B., Hardouin 24]

On peut écrire (x, y) = γx + γy + α, de sorte que pour H(x, y) ∈ C(t, x, y)
• H découple ssi Hα ≡ 0.

• Si H découple, alors H(x, y) ≡ Hγx +Hγy .

Caractérisation du découplage

avec Hγx = F (x) ∈ C(x, t) et Hγy = G(y) ∈ C(y, t)



(u1, v2)

(u2, v2)

(u2, v3)

(u3, v3)

(u3, v1)

(u1, v1)

c

+

−

+

−

+

−

c = (u1, v2)− (u1, v1) + (u2, v3)− (u2, v2) + (u3, v1)− (u3, v2)

Construction de α : cycles bicolores



(u1, v2)

(u2, v2)

(u2, v3)

(u3, v3)

(u3, v1)

(u1, v1)

c

+

−

+

−

+

−

c = (u1, v2)− (u1, v1) + (u2, v3)− (u2, v2) + (u3, v1)− (u3, v2)

F (x)c = (F (u1)−F (u1))+(F (u2)−F (u2))+(F (u3)−F (u3)) = 0

G(y)c = (G(v2)−G(v2)) + (G(v3)−G(v3)) + (G(v1)−G(v1)) = 0

Supposons que H(x, y) ≡ F (x) +G(y)

Construction de α : cycles bicolores



⇒ si H(x, y) découple, alors Hc ≡ 0 pour tous tels c.

(u1, v2)

(u2, v2)

(u2, v3)

(u3, v3)

(u3, v1)

(u1, v1)

c

+

−

+

−

+

−

c = (u1, v2)− (u1, v1) + (u2, v3)− (u2, v2) + (u3, v1)− (u3, v2)

F (x)c = (F (u1)−F (u1))+(F (u2)−F (u2))+(F (u3)−F (u3)) = 0

G(y)c = (G(v2)−G(v2)) + (G(v3)−G(v3)) + (G(v1)−G(v1)) = 0

Supposons que H(x, y) ≡ F (x) +G(y)

Construction de α : cycles bicolores



⇒ si H(x, y) découple, alors Hc ≡ 0 pour tous tels c.

(u1, v2)

(u2, v2)

(u2, v3)

(u3, v3)

(u3, v1)

(u1, v1)

c

+

−

+

−

+

−

c = (u1, v2)− (u1, v1) + (u2, v3)− (u2, v2) + (u3, v1)− (u3, v2)

F (x)c = (F (u1)−F (u1))+(F (u2)−F (u2))+(F (u3)−F (u3)) = 0

G(y)c = (G(v2)−G(v2)) + (G(v3)−G(v3)) + (G(v1)−G(v1)) = 0

Supposons que H(x, y) ≡ F (x) +G(y)

α est une combinaison linéaire de tels c

Construction de α : cycles bicolores



Proposition Soient σ ∈ G, c une 0-châıne et H(x, y) ∈ C(t, x, y). Alors
σ ·Hc = Hσ·c

Construction de γx et γy : traces



Proposition Soient σ ∈ G, c une 0-châıne et H(x, y) ∈ C(t, x, y). Alors
σ ·Hc = Hσ·c

Construction de γx et γy : traces

Y0

Y1

Y2

Y0 :=
∑

σ∈Gy
σ · (x, y) Y1 :=

∑
σ∈Gy

σ · (x, y1)
Y2 =

∑
σ∈G σ · (x4, y1)



Si σ ∈ Gy, on a σ · Yi = Yi

Proposition Soient σ ∈ G, c une 0-châıne et H(x, y) ∈ C(t, x, y). Alors
σ ·Hc = Hσ·c

Construction de γx et γy : traces

Y0

Y1

Y2

Y0 :=
∑

σ∈Gy
σ · (x, y) Y1 :=

∑
σ∈Gy

σ · (x, y1)
Y2 =

∑
σ∈G σ · (x4, y1)



Si σ ∈ Gy, on a σ · Yi = Yi

Proposition Soient σ ∈ G, c une 0-châıne et H(x, y) ∈ C(t, x, y). Alors
σ ·Hc = Hσ·c

⇒ Si H(x, y) ∈ C(x, y, t), et σ ∈ Gy, on a

σ ·HYi
= Hσ·Yi

= HYi
∈ C(t,O)

Construction de γx et γy : traces

Y0

Y1

Y2

Y0 :=
∑

σ∈Gy
σ · (x, y) Y1 :=

∑
σ∈Gy

σ · (x, y1)
Y2 =

∑
σ∈G σ · (x4, y1)



Si σ ∈ Gy, on a σ · Yi = Yi

⇒ HY0
, HY1

, HY2
∈ C(t, y) par Galois

Proposition Soient σ ∈ G, c une 0-châıne et H(x, y) ∈ C(t, x, y). Alors
σ ·Hc = Hσ·c

⇒ Si H(x, y) ∈ C(x, y, t), et σ ∈ Gy, on a

σ ·HYi
= Hσ·Yi

= HYi
∈ C(t,O)

Construction de γx et γy : traces

Y0

Y1

Y2

Y0 :=
∑

σ∈Gy
σ · (x, y) Y1 :=

∑
σ∈Gy

σ · (x, y1)
Y2 =

∑
σ∈G σ · (x4, y1)



Si σ ∈ Gy, on a σ · Yi = Yi

⇒ HY0
, HY1

, HY2
∈ C(t, y) par Galois

Proposition Soient σ ∈ G, c une 0-châıne et H(x, y) ∈ C(t, x, y). Alors
σ ·Hc = Hσ·c

⇒ Si H(x, y) ∈ C(x, y, t), et σ ∈ Gy, on a

σ ·HYi
= Hσ·Yi

= HYi
∈ C(t,O)

γy est combinaison linéaire des Yi

Construction de γx et γy : traces

Y0

Y1

Y2

Y0 :=
∑

σ∈Gy
σ · (x, y) Y1 :=

∑
σ∈Gy

σ · (x, y1)
Y2 =

∑
σ∈G σ · (x4, y1)



Exemple

(x, y) =
(
X0

2
− X1

8
+ X2

8

)
+
(
Y0

4
− Y1

4

)
+ α

X0

X1

X2

X3

Y0

Y1

Y2

xy ≡ −3tx2−t−4x
4t(x2+1)

−y+4
4y

0+ +



Une jolie formule

Théorème [B., Hardouin 24] Si l’orbite est distance-transitive, alors le
découplage de (x, y) est donné par

γx =
∑
i≥1

#Xi

#O
∑

1≤2j+1≤i

(
X2j

#X2j
− X2j+1

#X2j+1

)

γy =
∑
i≥1

#Yi
#O

∑
1≤2j+1≤i

(
Y2j

#Y2j
− Y2j+1

#Y2j+1

)



Une jolie formule

Théorème [B., Hardouin 24] Si l’orbite est distance-transitive, alors le
découplage de (x, y) est donné par

γx =
∑
i≥1

#Xi

#O
∑

1≤2j+1≤i

(
X2j

#X2j
− X2j+1

#X2j+1

)

γy =
∑
i≥1

#Yi
#O

∑
1≤2j+1≤i

(
Y2j

#Y2j
− Y2j+1

#Y2j+1

)

⇒ évaluations sous forme de sommes de Newton explicites
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rationnels

Paire d’invariants
sans pôles en
x = 0 et y = 0

Q(x, 0) et Q(0, y)
algébriques

Q(x, y) algébrique

Retour sur la stratégie d’algébricité
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orbite finie

Équation
fonctionnelle pour

Q(x, y)

Paire d’invariants
impliquant Q(x, 0)

et Q(0, y)

Découplage de xy Paire d’invariants
rationnels

Paire d’invariants
sans pôles en
x = 0 et y = 0

Q(x, 0) et Q(0, y)
algébriques

Q(x, y) algébrique

Retour sur la stratégie d’algébricité

décider ? pôles adéquats ? équation bien fondée ?
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• Premières preuves d’algébricité de modèles à grands pas (conj.
[Bousquet-Mélou,Bostan,Melczer,18]) + polynôme minimal de la série des excursions
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• Premières preuves d’algébricité de modèles à grands pas (conj.
[Bousquet-Mélou,Bostan,Melczer,18]) + polynôme minimal de la série des excursions

• Conjecture d’algébricité d’une famille infinie de modèles qui étendent le modèle de Gessel

1

2

3

i

j

4

5

n− 1 n 2n+ 1

. . . ︸ ︷︷ ︸
nH1 H2 Hn

Applications

x = n+ (n+ 1)y



• Premières preuves d’algébricité de modèles à grands pas (conj.
[Bousquet-Mélou,Bostan,Melczer,18]) + polynôme minimal de la série des excursions

• Conjecture d’algébricité d’une famille infinie de modèles qui étendent le modèle de Gessel

1

2

3

i

j

4

5

n− 1 n 2n+ 1

. . . ︸ ︷︷ ︸
nH1 H2 Hn
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Applications
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• Premières preuves d’algébricité de modèles à grands pas (conj.
[Bousquet-Mélou,Bostan,Melczer,18]) + polynôme minimal de la série des excursions

• Conjecture d’algébricité d’une famille infinie de modèles qui étendent le modèle de Gessel

1

2

3

i

j

4

5

n− 1 n 2n+ 1

. . . ︸ ︷︷ ︸
nH1 H2 Hn

• orbite finie

• invariants rationnels explicites

• découplage explicite de xi+1yj+1 tous les points de départ
(i, j) conjecturés

Applications

x = n+ (n+ 1)y



Projets futurs



• Montrer le critère orbite finie + xy découple ⇒ algébricité

Projets futurs



• Montrer le critère orbite finie + xy découple ⇒ algébricité

• Continuer d’exploiter la structure de l’orbite pour d’autres fins

Projets futurs



• Montrer le critère orbite finie + xy découple ⇒ algébricité

• Continuer d’exploiter la structure de l’orbite pour d’autres fins

• Découvrir d’autres modèles d’orbite finie + détecter les points de départ algébriques

Projets futurs



2. Chemins à petits pas de genre

zéro à bords interactifs



S = {(1, 1), (1,−1), (−1, 1)}

(S est un modèle)

Chemins à bords interactifs

d1,1

d1,−1

d−1,1

a

b



S = {(1, 1), (1,−1), (−1, 1)}

(S est un modèle)

Chemins à bords interactifs

d1,1

d1,−1

d−1,1

a

b



S = {(1, 1), (1,−1), (−1, 1)}

(S est un modèle)

Chemins à bords interactifs

d1,1

d1,−1

d−1,1

a

b



S = {(1, 1), (1,−1), (−1, 1)}

(S est un modèle)

Chemins à bords interactifs

d1,1

d1,−1

d−1,1

a

b



S = {(1, 1), (1,−1), (−1, 1)}

(S est un modèle)

Chemins à bords interactifs

d1,1

d1,−1

d−1,1

a

b



S = {(1, 1), (1,−1), (−1, 1)}

(S est un modèle)

Chemins à bords interactifs

d1,1

d1,−1

d−1,1

a

b



S = {(1, 1), (1,−1), (−1, 1)}

(S est un modèle)

Chemins à bords interactifs

d1,1

d1,−1

d−1,1

a

b



S = {(1, 1), (1,−1), (−1, 1)}

(S est un modèle)

Chemins à bords interactifs

d1,1

d1,−1

d−1,1

a

b



S = {(1, 1), (1,−1), (−1, 1)}

(S est un modèle)

Chemins à bords interactifs

d1,1

d1,−1

d−1,1

a

b



S = {(1, 1), (1,−1), (−1, 1)}

(S est un modèle)

Chemins à bords interactifs

d1,1

d1,−1

d−1,1

a

b



S = {(1, 1), (1,−1), (−1, 1)}

(S est un modèle)

Chemins à bords interactifs

d1,1

d1,−1

d−1,1

a

b



S = {(1, 1), (1,−1), (−1, 1)}

(S est un modèle)

10 pas
1 contact avec Ox

2 contacts avec Oy

Chemins à bords interactifs

d1,1

d1,−1

d−1,1

4 pas (1, 1) 3 pas (1,−1)
3 pas (−1, 1)

a

b



S = {(1, 1), (1,−1), (−1, 1)}

(S est un modèle)

10 pas
1 contact avec Ox

2 contacts avec Oy

Chemins à bords interactifs

d1,1

d1,−1

d−1,1

4 pas (1, 1) 3 pas (1,−1)
3 pas (−1, 1)

d41,1d
3
1,−1d

3
−1,1ab

2x4y4t10

a

b



Q(x, y) =
∑

marches

∏
p∈S

dnp
p

 anxbnyxiyjtn

xyK(x, y)Q(x, y) =
xy

ab
+ γ1(x, y)Q(x, 0) + γ2(x, y)Q(0, y) + γ3(x, y)Q(0, 0).

xyK(x, y)Q(x, y) = xy − txQ(x, 0)− tyQ(0, y) + tQ(0, 0)

S ⊂

Sans interaction (a = b = 1) :

Cas général :

Équation fonctionnelle

S(x, y) =
∑

(k,l)∈S dk,lx
kyl



Q(x, y) =
∑

marches

∏
p∈S

dnp
p

 anxbnyxiyjtn

xyK(x, y)Q(x, y) =
xy

ab
+ γ1(x, y)Q(x, 0) + γ2(x, y)Q(0, y) + γ3(x, y)Q(0, 0).

xyK(x, y)Q(x, y) = xy − txQ(x, 0)− tyQ(0, y) + tQ(0, 0)

S ⊂

Sans interaction (a = b = 1) :

Cas général : Méthode du noyau

Équation fonctionnelle

S(x, y) =
∑

(k,l)∈S dk,lx
kyl



xyK(x, y)Q(x, y) =
xy

ab
+γ1(x, y)Q(x, 0)+γ2(x, y)Q(0, y)+γ3(x, y)Q(0, 0)

Méthode du noyau



xyK(x, y)Q(x, y) =
xy

ab
+γ1(x, y)Q(x, 0)+γ2(x, y)Q(0, y)+γ3(x, y)Q(0, 0)

(x, y) := (x(s), y(s)) tel que

Méthode du noyau



xyK(x, y)Q(x, y) =
xy

ab
+γ1(x, y)Q(x, 0)+γ2(x, y)Q(0, y)+γ3(x, y)Q(0, 0)

(x, y) := (x(s), y(s)) tel que

• K(x(s), y(s)) = 0

Méthode du noyau



xyK(x, y)Q(x, y) =
xy

ab
+γ1(x, y)Q(x, 0)+γ2(x, y)Q(0, y)+γ3(x, y)Q(0, 0)

(x, y) := (x(s), y(s)) tel que

• K(x(s), y(s)) = 0

• les évaluations Q(x(s), y(s)), Q(x(s), 0)
et Q(0, y(s)) sont bien définies

Méthode du noyau



xyK(x, y)Q(x, y) =
xy

ab
+γ1(x, y)Q(x, 0)+γ2(x, y)Q(0, y)+γ3(x, y)Q(0, 0)

(x, y) := (x(s), y(s)) tel que

• K(x(s), y(s)) = 0

• les évaluations Q(x(s), y(s)), Q(x(s), 0)
et Q(0, y(s)) sont bien définies

x(s)y(s)K(x(s), y(s))Q(x(s), y(s)) =
x(s)y(s)

ab
+ γ1(x(s), y(s))Q(x(s), 0)

+ γ2(x(s), y(s))Q(0, y(s)) + γ3(x(s), y(s))Q(0, 0)

Méthode du noyau



Cas particulier : les modèles de genre 0 [DHRS 18]



Cas particulier : les modèles de genre 0 [DHRS 18]



(x(s), y(s))

P1 = C ∪ {∞} Et = {(x, y) : K(x, y) = 0} ⊂ P1 × P1

0

0

∞

Cas particulier : les modèles de genre 0 [DHRS 18]



(x(s), y(s))

P1 = C ∪ {∞} Et = {(x, y) : K(x, y) = 0} ⊂ P1 × P1

• x(s), y(s) ∈ C(s) et K(x(s), y(s)) = 0

0

0

∞

Cas particulier : les modèles de genre 0 [DHRS 18]



(x(s), y(s))

P1 = C ∪ {∞} Et = {(x, y) : K(x, y) = 0} ⊂ P1 × P1

• x(s), y(s) ∈ C(s) et K(x(s), y(s)) = 0

• Q(x(s), y(s)), Q(x(s), 0) et Q(0, y(s)) sont méromorphes pour s ∈ U0

0

0

∞

Cas particulier : les modèles de genre 0 [DHRS 18]



(x(s), y(s))

P1 = C ∪ {∞} Et = {(x, y) : K(x, y) = 0} ⊂ P1 × P1

• x(s), y(s) ∈ C(s) et K(x(s), y(s)) = 0

• ∃q > 1, x(1/s) = x(s) et y(q/s) = y(s) (relèvement du groupe)

• Q(x(s), y(s)), Q(x(s), 0) et Q(0, y(s)) sont méromorphes pour s ∈ U0

0

0

∞

Cas particulier : les modèles de genre 0 [DHRS 18]



K(x, y)Q(x, y) = ω + γ1(x, y)xQ(x, 0) + γ2(x, y)yQ(0, y)

Évaluation(s) de l’équation



K(x, y)Q(x, y) = ω + γ1(x, y)xQ(x, 0) + γ2(x, y)yQ(0, y)

0 = ω + γ̃1(s)x(s)Q(x(s), 0) + γ̃2(s)y(s)Q(0, y(s))

γ̃1(s) = γ1(x(s), y(s))

γ̃2(s) = γ2(x(s), y(s))

Évaluation en (x, y) = (x(s), y(s)) pour s ∈ U0 :

Évaluation(s) de l’équation



K(x, y)Q(x, y) = ω + γ1(x, y)xQ(x, 0) + γ2(x, y)yQ(0, y)

0 = ω + γ̃1(s)x(s)Q(x(s), 0) + γ̃2(s)y(s)Q(0, y(s))

γ̃1(s) = γ1(x(s), y(s))

γ̃2(s) = γ2(x(s), y(s))

Évaluation en (x, y) = (x(s), y(s)) pour s ∈ U0 :

Évaluation en (x, y) = (x( qs ), y(
q
s )) = (x( sq ), y(s)) pour s ∈ U0 :

0 = ω + γ̃1(
q
s )x(

s
q )Q(x( sq ), 0) + γ̃2(

q
s )y(s)Q(0, y(s))

Évaluation(s) de l’équation



K(x, y)Q(x, y) = ω + γ1(x, y)xQ(x, 0) + γ2(x, y)yQ(0, y)

0 = ω + γ̃1(s)x(s)Q(x(s), 0) + γ̃2(s)y(s)Q(0, y(s))

γ̃1(s) = γ1(x(s), y(s))

γ̃2(s) = γ2(x(s), y(s))

Évaluation en (x, y) = (x(s), y(s)) pour s ∈ U0 :

Évaluation en (x, y) = (x( qs ), y(
q
s )) = (x( sq ), y(s)) pour s ∈ U0 :

0 = ω + γ̃1(
q
s )x(

s
q )Q(x( sq ), 0) + γ̃2(

q
s )y(s)Q(0, y(s))

Élimination :

x( sq )Q(x( sq ), 0) = u(s) · x(s)Q(x(s), 0) + v(s)

Évaluation(s) de l’équation



F ( sq ) = u(s)F (s) + v(s)

0 = ω + γ̃1(s)F (s) + γ̃2(s)G(s)

pour s ∈ U0F (s) = x(s)Q(x(s), 0) G(s) = y(s)Q(0, y(s))

Équation aux q-différences et classification



F ( sq ) = u(s)F (s) + v(s)

0 = ω + γ̃1(s)F (s) + γ̃2(s)G(s)

Q(x, y) algébrique

Q(x, y) D-finie

Q(x, y) D-algébrique

F (s) et G(s) algébriques

F (s) et G(s) D-finies

F (s) et G(s) D-algébriques

⇔

⇔

⇔

pour s ∈ U0F (s) = x(s)Q(x(s), 0) G(s) = y(s)Q(0, y(s))

Équation aux q-différences et classification

C(s)C(x, y)



Théorème [Ishizaki 98; Adamczewski, Dreyfus, Hardouin 08]
Les solutions méromorphes sur C d’équations aux q-différences linéaires à coefficients
rationnels sont soit rationnelles soit hypertranscendantes.

Rigidité des solutions D-algébriques



Stratégie :

Théorème [Ishizaki 98; Adamczewski, Dreyfus, Hardouin 08]
Les solutions méromorphes sur C d’équations aux q-différences linéaires à coefficients
rationnels sont soit rationnelles soit hypertranscendantes.

Rigidité des solutions D-algébriques



Stratégie :

Théorème [Ishizaki 98; Adamczewski, Dreyfus, Hardouin 08]
Les solutions méromorphes sur C d’équations aux q-différences linéaires à coefficients
rationnels sont soit rationnelles soit hypertranscendantes.

Q(x, y) est D-algébrique ⇔ F (s) est D-algébrique ⇔ F (s) rationnelle

Rigidité des solutions D-algébriques



Stratégie :

Théorème [Ishizaki 98; Adamczewski, Dreyfus, Hardouin 08]
Les solutions méromorphes sur C d’équations aux q-différences linéaires à coefficients
rationnels sont soit rationnelles soit hypertranscendantes.

Q(x, y) est D-algébrique ⇔ F (s) est D-algébrique ⇔ F (s) rationnelle

• si (E) a une unique solution, rationnelle, on montre que Q(x, y) est algébrique

Rigidité des solutions D-algébriques



Stratégie :

Théorème [Ishizaki 98; Adamczewski, Dreyfus, Hardouin 08]
Les solutions méromorphes sur C d’équations aux q-différences linéaires à coefficients
rationnels sont soit rationnelles soit hypertranscendantes.

Q(x, y) est D-algébrique ⇔ F (s) est D-algébrique ⇔ F (s) rationnelle

• si (E) a une unique solution, rationnelle, on montre que Q(x, y) est algébrique

• si (E) n’a pas de solution rationnelle, on montre que Q(x, y) est hypertranscendante

Rigidité des solutions D-algébriques



F ( sq ) = F (s) + v(s)

Cas sans interaction : a = b = 1

a

b



F ( sq ) = F (s) + v(s)

Cas sans interaction : a = b = 1

Théorème [Dreyfus, Hardouin, Roques, Singer 18]

a

b



F ( sq ) = F (s) + v(s)

Cas sans interaction : a = b = 1

Pour tous les poids di,j , la série Q(x, y) est hypertranscendante.

Théorème [Dreyfus, Hardouin, Roques, Singer 18]

a

b



Cas général : a et b quelconques

F ( sq ) = u(s)F (s) + v(s)

a

b



Cas général : a et b quelconques

F ( sq ) = u(s)F (s) + v(s)

Theorème [B. 26+]

a

b



Cas général : a et b quelconques

F ( sq ) = u(s)F (s) + v(s)

Rationnels ssi a+ b = ab

Theorème [B. 26+]

Algébrique ssi a = b = 2

Pour tous les autres poids a et b, la série Q(x, y) est hypertranscendante.

a

b



Localisation des pôles

F ( sq ) = u(s)F (s) + v(s)



Localisation des pôles

F ( sq ) = u(s)F (s) + v(s)

pôleszéros



Lemme [B. 26+] Il existe des ensembles finis L− et L+ (dépendants de u(s) et v(s))
tels que pour s un pôle de F :

Localisation des pôles

F ( sq ) = u(s)F (s) + v(s)

pôleszéros

• si s ̸∈ L+ alors qs est un pôle de F• si s ̸∈ L− alors s
q est un pôle de F



Lemme [B. 26+] Il existe des ensembles finis L− et L+ (dépendants de u(s) et v(s))
tels que pour s un pôle de F :

Corollaire [B. 26+] Si F est une solution rationnelle de (E), et s ̸∈ {0,∞} est un pôle
de F , alors s est de la forme suivante :

Localisation des pôles

F ( sq ) = u(s)F (s) + v(s)

pôleszéros

• si s ̸∈ L+ alors qs est un pôle de F• si s ̸∈ L− alors s
q est un pôle de F



Lemme [B. 26+] Il existe des ensembles finis L− et L+ (dépendants de u(s) et v(s))
tels que pour s un pôle de F :

Corollaire [B. 26+] Si F est une solution rationnelle de (E), et s ̸∈ {0,∞} est un pôle
de F , alors s est de la forme suivante :

Localisation des pôles

qs q2s qns ∈ L+−→ −→ −→ . . . −→s

F ( sq ) = u(s)F (s) + v(s)

pôleszéros

• si s ̸∈ L+ alors qs est un pôle de F• si s ̸∈ L− alors s
q est un pôle de F



Lemme [B. 26+] Il existe des ensembles finis L− et L+ (dépendants de u(s) et v(s))
tels que pour s un pôle de F :

Corollaire [B. 26+] Si F est une solution rationnelle de (E), et s ̸∈ {0,∞} est un pôle
de F , alors s est de la forme suivante :

Localisation des pôles

qs q2s qns ∈ L+s
q

s
q2q−ms ∈ L− −→ −→ −→ . . . −→←−←−←−. . .←− s

F ( sq ) = u(s)F (s) + v(s)

pôleszéros

• si s ̸∈ L+ alors qs est un pôle de F• si s ̸∈ L− alors s
q est un pôle de F



Corollaire [B. 26+] Si F est une solution rationnelle de (E), et s ̸∈ {0,∞} est un pôle
de F , alors s est de la forme suivante :

s− ∈ L− s+ ∈ L+

qn

Localisation des pôles

Stratégie synthétique

• S’il existe une solution rationnelle F (s) sans pôles triviaux, alors on a

• Sinon, toute solution rationnelle a ses pôles dans 0,∞.

F ( sq ) = u(s)F (s) + v(s)

pôleszéros



s1

s2

q
s3

q
s4

1
s1

1
s2

s3
q

s4
qL−

L+

Notation s’il existe n ∈ Z tel que qns− = s+ on écrit n, sinon ⊥

Localisation des pôles sur un exemple



s1

s2

q
s3

q
s4

1
s1

1
s2

s3
q

s4
q

⊥

⊥

⊥

⊥

⊥

⊥−1−1
⊥

si a = 1
sinon

−2 si b = 1
⊥ sinon

−2
0

⊥

si a+ b = ab
si a = b = 1
sinon

L−
L+

Notation s’il existe n ∈ Z tel que qns− = s+ on écrit n, sinon ⊥

Localisation des pôles sur un exemple



s1

s2

q
s3

q
s4

1
s1

1
s2

s3
q

s4
q

⊥

⊥

⊥

⊥

⊥

⊥−1−1
⊥

si a = 1
sinon

−2 si b = 1
⊥ sinon

−2
0

⊥

si a+ b = ab
si a = b = 1
sinon

L−
L+

Notation s’il existe n ∈ Z tel que qns− = s+ on écrit n, sinon ⊥

Localisation des pôles sur un exemple



• Supposons que a+ b ̸= ab et que Q(x,y) est D-algébrique

Exemple d’un des modèles



• Supposons que a+ b ̸= ab et que Q(x,y) est D-algébrique

Exemple d’un des modèles

• F (s) est rationnelle par rigidité des solutions D-alg des équations aux q-différences



• Supposons que a+ b ̸= ab et que Q(x,y) est D-algébrique

• on montre que si a+ b ̸= ab, les seuls pôles de F sont 0 et ∞

Exemple d’un des modèles

• F (s) est rationnelle par rigidité des solutions D-alg des équations aux q-différences



• Supposons que a+ b ̸= ab et que Q(x,y) est D-algébrique

• on montre que si a+ b ̸= ab, les seuls pôles de F sont 0 et ∞

• on montre que F est nécessairement une fonction de x(s)

Exemple d’un des modèles

• F (s) est rationnelle par rigidité des solutions D-alg des équations aux q-différences



• Supposons que a+ b ̸= ab et que Q(x,y) est D-algébrique

• on montre que si a+ b ̸= ab, les seuls pôles de F sont 0 et ∞

• on montre que F est nécessairement une fonction de x(s)

⇒ F (s) = P ( 1
x(s) ) ⇒ x(s)Q(x(s), 0) = P ( 1

x(s) ) ⇒ xQ(x, 0) ∈ C[ 1x ], absurde

Exemple d’un des modèles

• F (s) est rationnelle par rigidité des solutions D-alg des équations aux q-différences



• Supposons que a+ b ̸= ab et que Q(x,y) est D-algébrique

• Si a+ b = ab, on trouve une unique solution (!) :

Q(x, 0) =
1

1− x
ad1,0t+abd1,−1d0,1t2

1−abd1,−1d−1,1t2

Q(0, y) =
1

1− y
bd0,1t+abd−1,1d1,0t2

1−abd1,−1d−1,1t2

• on montre que si a+ b ̸= ab, les seuls pôles de F sont 0 et ∞

• on montre que F est nécessairement une fonction de x(s)

⇒ F (s) = P ( 1
x(s) ) ⇒ x(s)Q(x(s), 0) = P ( 1

x(s) ) ⇒ xQ(x, 0) ∈ C[ 1x ], absurde

Exemple d’un des modèles

• F (s) est rationnelle par rigidité des solutions D-alg des équations aux q-différences



Bilan

F ( sq ) = u(s)F (s) + v(s)

Rationnels ssi a+ b = ab

Theorème [B. 26+]

Algébrique ssi a = b = 2

Pour tous les autres poids a et b, la série Q(x, y) est hypertranscendante.

a

b



Q(x, 0) =
1

1− x
ad1,0t+abd1,−1d0,1t2

1−abd1,−1d−1,1t2

Q(0, y) =
1

1− y
bd0,1t+abd−1,1d1,0t2

1−abd1,−1d−1,1t2

Q(x, 0) =
1√

1− x2 4d1,1d1,−1t2

1−4d1,−1d−1,1t2

Q(0, y) =
1√

1− y2
4d1,1d−1,1t2

1−4d1,−1d−1,1t2

a = 1 + ε

a = b = 2

b = 1 + 1
ε

Q(x, 0) =
1

1− x
ad1,0t+abd1,−1d0,1t2

1−abd1,−1d−1,1t2

Q(0, y) =
1

1− y
bd0,1t+abd−1,1d1,0t2

1−abd1,−1d−1,1t2

Les cas algébriques



Projets futurs



Projets futurs

• Comprendre les modèles algébriques de genre 0



• Trouver d’autres modèles algébriques

Projets futurs

• Comprendre les modèles algébriques de genre 0



• Trouver d’autres modèles algébriques

• Traiter les autres modèles à petits pas

Projets futurs

• Comprendre les modèles algébriques de genre 0



• Trouver d’autres modèles algébriques

• Traiter les autres modèles à petits pas

• Reconstituer le diagramme de phases

Projets futurs

• Comprendre les modèles algébriques de genre 0




