La longue marche a travers le quart de plan

Soutenance de thése

Pierre Bonnet

10 Février 2026
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Modele et chemins contraints

S=1{(1,1),(1,-1),(-1,1)} CZ x Z

(S est un modele)

10 pas

Etant donné un modele S, dénombrer les chemins dans le quadrant de longueur n.
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Série génératrice

modele S C Z? fixé
A

R r2yHs

Qz,y) = >  z'y/t" € Qlz,y[t]

marche
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Exemple Modele S = {(1,1),(1,—1),(—1,1)}
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Equation aux variables catalytiques

Cas particulier : petits pas arriére S

S(x,y) — Z(i,j)ES :Eiyj et K(Qj,y) =1- tS($,y)

zyK(z,y)Q(z,y) = vy + ta(z)Q(x,0) + tb(y)Q(0, y) + tcQ(0,0)
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Cas particulier : petits pas arriére S
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Classification structurelle

Q(x,y) la série des chemins est-elle

Rationnelle ? Qlz,y) = P (x,y,t)/Pa(x,y,1)
ex: Qz,y) =1/(1 —t(z +y+zy)) %
Algébrique ? P(x,y,t,Q(x,y)) =0

o Qay) = 1/(1 -ty

D-finie ? P.(x,y,t,0,)(Q(x,y)) =0Vz € {x,y,t}



Classification structurelle

Q(x,y) la série des chemins est-elle

Rationnelle ?

Algébrique ?

D-finie ?

D-algébrique ?

Q(xvy) — Pl(x7y7t)/P2(xay7t)
ex: Q(z,y) =1/(1 —t(z +y + zy)) {

P(xayataQ(wyy)) =0
e QUry) = 1/(1 —try =T

P.(z,y,1,0:)(Q(x,y)) = 0Vz € {z,y,}

P,(z,y,t,Q(x,y),0.Q(x,y),...) =0Vz € {z,y,t}



Classification structurelle

Q(x,y) la série des chemins est-elle

Rationnelle ?

M
Algébrique ?
M
D-finie ?

M

D-algébrique ?

Q(xvy) — Pl(x7y7t)/P2(xay7t)
ex: Q(z,y) =1/(1 —t(z +y + zy)) {
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Classification structurelle

Q(x,y) la série des chemins est-elle

Rationnelle ? Qlzx,y) = Pi(z,y,t)/Py(x,y,t)

- ex: Q(z,y) =1/(1 -tz +y + zy)) 7
Algébrique ? P(z,y,t,Q(x,y)) = 0

N ex: Q(z,y) = 1/(1 — twy =5 4) <
D-finie ? P.(x,y,t,0,)(Q(x,y)) =0Vz € {x,y,t}

M
D-algébrique ? P.(x,y,t,Q(z,y),0,Q(x,y),...) =0Vz € {x,y,t}

Hypertranscendante ?



Chemins a petits pas, 2008-2018 %

vy K (z,y)Q(z,y) = 2y + a(z)Q(x,0) 4+ b(y)Q(0, y) + ctQ(0,0)

Algébriques

Différentiellement + X X XY XY ¥ XXX L Lk

fims XX A A AKX

Différentiellement

algébriques

Hypertranscendant K K KX X KX K XX KX XX X X X
X KAAKXKAKRKAXRXKKANAXNN
ARXNKNARNA XXX XX



Chemins a petits pas, 2008-2018 }Ié

vy K (z,y)Q(z,y) = 2y + a(z)Q(x,0) 4+ b(y)Q(0, y) + ctQ(0,0)

Algébriques
. . , Melczer .
Différentiellement Bousquet-Mélou Mishna
finis
Bostan Salvy Leilberger
Kauers
e, . Rechnitzer
Différentiellement
o Kurkova Wachtel
algébriques Fayolle e achtel
Hardouin aschel Denisov
H transcendant: Singer
yPEr | Dreyfus

Roques



Chemins a petits pas, 2008-2018 %

vy K (z,y)Q(z,y) = 2y + a(z)Q(x,0) 4+ b(y)Q(0, y) + ctQ(0,0)

Algebriques Combinatoire énumérative
Différentiellement Bousquet-Mélou 9% Mishna
finis
Bostan >alvy Leilberger
Kauers
. . Calcul formel Rechnitzer
Différentiellement
D Kurkova Wachtel
algébriques Fayolle S achiel
Hardouin Y Denisov
H transcendant Singer
ypPer | Dreyfus
Roques

Galois aux différences
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Genre 0 avec interactions



1. Chemins a grands pas




Equation fonctionnelle
S C

Cas particulier : petits pas arriere partant du point (%g, jo)
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Cas particulier : petits pas arriere partant du point (%g, jo)

ryK(z,y)Q(z,y) = 2y +a(z)Q(z, 0)+b(y)Q(0, y) +ctQ(0, 0)

ryK(z,y)Q(z,y) = 2y + A(x) + B(y)



Equation fonctionnelle
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Equation fonctionnelle
S C

Cas particulier : petits pas arriere partant du point (%g, jo)

ryK(z,y)Q(z,y) = 2y +a(z)Q(z, 0)+b(y)Q(0, y) +ctQ(0, 0)

oK (2, 0)Q(e ) =Gy 4 ) + By

— Stratégie d'algébricité de Bernardi, Bousquet-Mélou, Raschel 21



équations d'une variable catalytique

Théoréeme [Popescu 86; Bousquet-Mélou, Jehanne 05] Une équation de la forme
F(z,t) = B(z) +tP(z,t, F(z,1), [2°|F(z,1), [2 | F(2,1), ..., [z F(2,1))

(avec B et P des polynomes a coefficients dans C)

admet une unique solution F'(x,t) € C(x)|[t]].

De plus, F'(z,t) est algébrique sur C(z, ).



équations d'une variable catalytique

Théoréeme [Popescu 86; Bousquet-Mélou, Jehanne 05] Une équation de la forme
F(z,t) = B(z) +tP(z,t, F(z,1), [2°|F(z,1), [2 | F(2,1), ..., [z F(2,1))

(avec B et P des polynomes a coefficients dans C)

admet une unique solution F'(x,t) € C(x)|[t]].

De plus, F'(z,t) est algébrique sur C(z, ).
Exemple : Une série F'(x,t) de chemins dans un demi plan vérifie une équation de la forme

F(x,t) _1+Zmz F(x,t) +tP(x)F(x,t)

= F'(x,t) est algébrique
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Invariants de Tutte : du local au global
Soit K(x,y) =1—tS(z,y) ou S(x,y) vérifie [x71]S(x,y) < 0 et [y~ 1]S(z,y) < 0.
Définition [BM23] Soit A = Cl|z,y, t]|[1/x,1/y,1/t], et Hi(x,y), Ho(x,y) € A. Si
H, — Hy = K(z,y)U(x,y) avec U(x,y) € A

on écrit H; = H,. La relation = est compatible avec 4, X.

Soient I(z) € A et J(y) € A tels que I(x) = J(y), on dit que
(I(x),J(y)) est une paire d’invariants.



Invariants de Tutte : du local au global
Soit K(x,y) =1—tS(z,y) ou S(x,y) vérifie [x71]S(x,y) < 0 et [y~ 1]S(z,y) < 0.
Définition [BM23] Soit A = Cl|z,y, t]|[1/x,1/y,1/t], et Hi(x,y), Ho(x,y) € A. Si
H, — Hy = K(z,y)U(x,y) avec U(x,y) € A

on écrit H; = H,. La relation = est compatible avec 4, X.

Soient I(z) € A et J(y) € A tels que I(x) = J(y), on dit que
(I(x),J(y)) est une paire d’invariants.

Lemme des invariants [BM23; B. 26+] Si (/(x), J(y)) est une paire d'invariants avec

I(z) = O(z) J(y) = O(y)
alors I(z) = J(y) = 0.
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Relations entre invariants

(L(x), Ji(y) = (1/2 + -+ O(x), 1/y"* +--- + O(y)) Inconnus
(I(), Jo(y)) = (/2 + -+ O(2),1/y* + - + O(y)) € C(x,t) x C(y, 1)
Théoréme [B. 26+] Il existe un polynéme P € C|[[t]||X, Y] non nul tel que

I3(x) := P(Li(x), Ir(x)) = O(x) et Js(y) := P(Ji(y), J2(y)) = O(y)



Relations entre invariants

(L(x), Ji(y) = (1/2 + -+ O(x), 1/y"* +--- + O(y)) Inconnus
(I(), Jo(y)) = (/2 + -+ O(2),1/y* + - + O(y)) € C(x,t) x C(y, 1)
Théoréme [B. 26+] Il existe un polynéme P € C|[[t]||X, Y] non nul tel que

I3(x) := P(Li(x), Ir(x)) = O(x) et Js(y) := P(Ji(y), J2(y)) = O(y)

= Par le lemme des invariants, on a

P(Li(z), I(x)) =0 et P(Li(y), J2(y)) =0



Relations entre invariants

(L(x), Ji(y) = (1/2 + -+ O(x), 1/y"* +--- + O(y)) Inconnus
(I(), Jo(y)) = (/2 + -+ O(2),1/y* + - + O(y)) € C(x,t) x C(y, 1)
Théoréme [B. 26+] Il existe un polynéme P € C|[[t]||X, Y] non nul tel que

I3(x) := P(Li(x), Ir(x)) = O(x) et Js(y) := P(Ji(y), J2(y)) = O(y)

= Par le lemme des invariants, on a
P(hL(z), [(z)) =0 et P(A(y), J2(y) =0

= Equations d'une variable catalytique sur I1(x) et Ji(y)
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Exemple : modeéle de Gessel [BeBMRa 21] :

ryK(z,y)Q(z,y) = vy — t(y + 1)Q(0,y) — tQ(x,0) +1Q(0,0)

A . - 1 | K(xay)
Découplage : 2y = —- A t(y?{u) — )

([1($), Jl(y)) = (% -+ tQ(CIJ, O) - tQ(Ov 0)7 t(yﬁ—l) - t(y -+ 1)Q(an))

Invariants rationnels ,
| | L 14 |
(Io(2), Jo(y) i= (2 + & + 2+ £ — 22, B2 Tage)

2 Y

En éliminant les poles entre (I1(x), J1(y)) et (I2(x), J2(y)), puis en appliquant le lemme des
invariants, on trouve P, et P, a coefficients rationnels tels que

P (Q(z,0),2,t, [2"]Q(x,0), [27]Q(x,0))
Py(Q(07 y)? Y, t? [yO]Q(Oa y)? [le(Oa y))

0
0




Exemple : modeéle de Gessel [BeBMRa 21] :

ryK(z,y)Q(z,y) = vy — t(y + 1)Q(0,y) — tQ(x,0) +1Q(0,0)

2 . - 1 | K(way)
Découplage : 2y = —- A t(y?{u) — )

([1($), Jl(y)) - = (% T tQ(CIJ, O) — tQ(Ov 0)7 t(yﬁ—l) — t(y T 1)Q(an))

Invariants rationnels ,
| | L 14 |
(Io(2), Jo(y) i= (2 + & + 2+ £ — 22, B2 Tage)

2 Y

En éliminant les poles entre (I1(x), J1(y)) et (I2(x), J2(y)), puis en appliquant le lemme des
invariants, on trouve P, et P, a coefficients rationnels tels que

P (Q(z,0),2,t, [2"]Q(x,0), [27]Q(x,0))
Py(Q(07 y)? Y, t? [yO]Q(Oa y)? [le(Oa y))

0
0

Equations bien fondées + BMJ = Q(z,0) et Q(0, y) sont algébriques = Q(x,y) est algébrique
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Exemple
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Soit H(x,y) € C(x,y,t) une fraction,
H(x,y) découple si et seulement si



Groupe des petits pas [Bousquet-Mélou, Mishna 06]

Découplage

Gi=<W, &> Soit H(x,y) € C(x,y,t) une fraction,
avec U et ® involutions vérifiant H (x,vy) découple si et seulement si
o U(u,v)=(u,v) et ®(u,v) = (u,v) H(z,y) — H(Ty,y) + H(Zy,z?y)--- =0
o 5(¥(u,v)) = 5(®(u,v)) = 5(u,v)
Invariants rationnels
Exemple o.4) Soit R(z,y) := 22 + 772 + 72 + 222
LY
v, P g = alors R(z,y) = I (x) et R(x,y) = J2(y)
(z,7x?) (ZTY,y) paire d'invariants non-constants
o | U 5
_ _ Y(u,v) = (u,vu
(zy,5T°) @aty) Y (__ )
v | o ®(u,v) = (uv,v)
(zy,7) (T, 2%y)
o 4y



Groupe des petits pas [Bousquet-Mélou, Mishna 06]

g =<V, P>

avec U et ® involutions vérifiant
o U(u,v) = (u,v) et ®(u,v) = (v, v)
o 5(¥(u,v)) = 5(P(u,v)) = S(u,v)

Exemple
(z,y)

v, o
(z,yT%) (ZY,y)
o |
(zy, yT°) (Z7, zy)
U | o
(zy, 7 (T, 2°y)
P <"

Découplage
Soit H(x,y) € C(x,y,t) une fraction,
H(x,y) découple si et seulement si

Invariants rationnels
Soit R(x,y) := % +7y° + T° + 2°y°
alors R(z,y) = I (x) et R(x,y) = J2(y)

paire d'invariants non-constants

Preuves reposant sur ce groupe de
transformations rationnelles, n'existant a
priori que pour les petits pas.
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avec VU et ® involutions vérifiant
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o 5(¥(u,v)) = 5(®(u,v)) = S(u,v)

Définition 1 (u,v) ~ (u,v")
Ssi
(u',v") = ¥ (u,v) ou (u',v") = ®(u,v)



Orbite des grands pas [Bostan, Bousquet-Mélou, Melczer 18]

G =<V, P>

avec VU et ® involutions vérifiant
o VU(u,v) = (u,v) et ®(u,v) = (v, v)
o 5(¥(u,v)) = 5(®(u,v)) = S(u,v)

Définition 1 (u,v) ~ (u/,v") Définition 2 (u,v) ~ (u, v')
Ssi SSl
(u',v") = ¥ (u,v) ou (u',v") = ®(u,v) S(u,v) =S, v')etu=u" ouv="10
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G =<V, P>

avec VU et ® involutions vérifiant
o VU(u,v) = (u,v) et ®(u,v) = (v, v)
o 5(¥(u,v)) = 5(®(u,v)) = S(u,v)

Définition 1 (u,v) ~ (u/,v") Définition 2 (u,v) ~ (u, v')
Ssi SSl
(u',v") = ¥ (u,v) ou (u',v") = ®(u,v) S(u,v) =S, v')etu=u" ouv="10

e Requiert un groupe
e O = Orbite de (x,y) par G



Orbite des grands pas [Bostan, Bousquet-Mélou, Melczer 18]

Exemple :

Définition 2 (u,v) ~ (u,’ v')
SSl
S(u,v) =S, v')etu=u" ouv="10
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Structure galoisienne de I'orbite [B., Hardouin 24]

C(t, O) K(x,y,t) =0
G, oGy
C(t,z,y)
C(t, z) C(t,y)
N




Structure galoisienne de I'orbite [B., Hardouin 24]

C(t, O) K(x,y,t) =0
G N Gy
Théoréme [B., Hardouin 24] Le groupe G agit
C(t,x,y) sur O par automorphismes de graphes
/ \ o - (uv U) — (Oua UU)
C(t,x) C(t,y) Cette action est fidele, transitive et finiment
\ engendrée.
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e Orbite finie
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Invariants rationnels

Théoréme [Fried 78; B., Hardouin 24] On a équivalence entre
e Orbite finie
e Groupe fini
e Existence d'invariants rationnels non constants

Théoréme [B., Hardouin 24]
e Le corps des invariants k;,, vaut C(¢, f(x)) pour un certain invariant f(x).
o Soit 1z(X) = ]],.(u.0)eo (X —u) le polyndme annulateur des coordonnées gauches.

Alors tout coefficient non constant de .. (X) engendre ki, .



Invariants rationnels : Exemple

K(x,y,t)

pe(Z) = Z° — (

— 2

((:U3—|—5136+ :134—x2—1)t2—|—:132(:132—1)75—:133)2_1

2z (22 +1)°

=0
x3+a:6+:1:4—:(;2—1)t2+a:2(x2—1)t—93325 | t+1Z4
t2q (x2 +1)° t
a:6t2+(—§+%)az5+t(t+1)x4+(—t2—t)a;2—(t o 3
A
2z (22 + 1)°



Invariants rationnels : Exemple K

K(x,y,t) =0
3 6 4 2 2 2 (.2 3
>4+ +xr—x -1t +x (¢ — 1)t —x t+1
qu(2)226_( ) - ( ) Z5I + Z4
t?x (x? 4+ 1) t
642 2, 1\ .5 4 2 o (=)= 9
_th+(—§+§>x +t(t+1)x +(—t —t)x — 5 — t Z3_t+122
2z (22 + 1)° t
((:U3—|—5136+:134—x2—1)t2—|—:132(:132—1)75—:133)2 .
2z (22 +1)°
tyt —ty —y3 —t t+1 4102 0 12 Pyl
_ g6 _ Y nyy 75 ] J; Y i ytzizt WS g3
t 41 —tyt +ty +y> +t
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K(x,y,t) =0
3 6 4 2 2 2 (.2 3
>4+ +xr—x -1t +x (¢ — 1)t —x t+1
qu(2)226_( ) - ( ) Z5I + Z4
t?x (x? 4+ 1) t
642 2, 1\ .5 4 2 o (=)= 9
_th+(—§+§>x +t(t+1)x +(—t —t)x — 5 — t Z3_t+122
2z (22 + 1)° t
((:U3—|—5136+:134—x2—1)t2—|—:132(:132—1)75—:133)2 .
2z (22 +1)°
tyt —ty —y> —t t+1 4102 0 12 Pyl
_ g6 _ Y nyy 75 ] J; Y i ytzizt WS g3
t 41 —tyt +ty +y> +t



Invariants rationnels : Exemple K

K(x,y,t) =0
3 6 4 2 2 2 (.2 3
z+xr - —-1)t"+zx° (- — 1)t —x t+1
qu(2)226_( ) : ( ) Z5I + Z4
t2x (x? 4+ 1) t
642 2 1\ .5 4 2 o (P-1)z 9
_th+(—§+§>x +t(t+1)x +(—t —t)m — 5 —1 Z3_t+1Z2
2z (22 + 1)° t
((:U3—|—5136+:134—5132—1)t2—|—:132(:1:2—1)75—:133)2 .
2z (22 +1)°
tyt —ty —y3 —t t+ 1 412y 1 )2t P g
_ g6 _ Y nyy 75 ] J; Y i ytzizt WS g3
t 41 —tyt +ty +y> +t



Découplage : Evaluation des 0-chaines



Découplage : Evaluation des 0-chaines

(U’lv Ul)
V

(u2,v2)

(u1,v3)



Découplage : Evaluation des 0-chaines

(U2, Uz) A




Découplage : Evaluation des 0-chaines

(u2702) 4 E— C:3'(u17v1)_|_4°(u27UQ)_(U17U3)




Découplage : Evaluation des 0-chaines

(u2av2) E— C:3'(u17v1)_|_4°(u2702)_(u17/03)

Pour H(x,y) une fraction, on définit H. € C(t, O) par linéarité

H.(x,y)=3-H(uy,v1) +4- H(us,ve) — H(ui,v3)



Caractérisation du découplage

Théoréeme [B., Hardouin 24]
On peut écrire (x,y) = v, + 7y + «, de sorte que pour H(z,y) € C(t,z,y)
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Théoréeme [B., Hardouin 24]
On peut écrire (x,y) = v, + 7y + «, de sorte que pour H(z,y) € C(t,z,y)
e H découple ssi H, = 0.



Caractérisation du découplage

Théoréeme [B., Hardouin 24]

On peut écrire (x,y) = v, + 7y + «, de sorte que pour H(z,y) € C(t,z,y)
e H découple ssi H, = 0.

e Si H découple, alors H(z,y) = H,, + H,,.

avec H, = F(z) € C(z,t) e H, =G(y) € C(y,t)



Construction de o :

cycles bicolores

c = (uy,v9) — (u1,v1) + (ug,v3) — (u2,v2) + (us3,v1) — (us, v2)



Construction de o :

cycles bicolores

c = (uy,v9) — (u1,v1) + (ug,v3) — (u2,v2) + (us3,v1) — (us, v2)

Supposons que H(x,y) = F(z) + G(y)
F(z)e = (F(u1) = F(u1)) + (F(ug) — Fuz)) 4 (F(uz) = F(u3))
G(y)e = (G(v2) = G(v2)) + (G(v3) — G(v3)) + (G(v1) — G(v1))

0
0



Construction de « : cycles bicolores

c = (uy,v9) — (u1,v1) + (ug,v3) — (u2,v2) + (us3,v1) — (us, v2)

@ 1 Supposons que H(x,y) = F(z) + G(y)
F(z)e = (F(u1) = F(u1)) + (Fuz) — F(uz)) + (F(us) — F(us))
LY \ ’ G(y)e = (G(v2) — G(v2)) + (G(v3) — G(v3)) + (G(v1) — G(v1))

= si H(x,y) découple, alors H. = 0 pour tous tels c.

0
0



Construction de « : cycles bicolores

c = (uy,v9) — (u1,v1) + (ug,v3) — (u2,v2) + (us3,v1) — (us, v2)

@ 1 Supposons que H(x,y) = F(z) + G(y)
F(z)e = (F(u1) = F(u1)) + (Fuz) — F(uz)) + (F(us) — F(us))
LY \ ’ G(y)e = (G(v2) — G(v2)) + (G(v3) — G(v3)) + (G(v1) — G(v1))

= si H(x,y) découple, alors H. = 0 pour tous tels c.

o est une combinaison linéaire de tels ¢

0
0



Construction de et ~, : traces

Proposition Soient o € GG, ¢ une 0-chaine et H(z,y) € C(t,z,y). Alors
o-H.=H,..
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YZ — ZO‘GG g - ($4,y1)
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Construction de ~, et ~, : traces

Proposition Soient o € GG, ¢ une 0-chaine et H(z,y) € C(t,z,y). Alors
oc-H.=H,..

Yy = Zaegy o-(r,y) Yp:= ZaeGy o-(x,y1)
Y2 — ZO‘EG g - ($4,y1)

SiceGy,onaoc-Y; =Y,

= Si H(z,y) € C(x,y,t), et c € G;, on a
| o - Hyz. — Hg.yi — Hyi c C(t, O)

= Hy,, Hy,, Hy, € C(t,y) par Galois




Construction de ~, et ~, : traces

Proposition Soient o € GG, ¢ une 0-chaine et H(z,y) € C(t,z,y). Alors
oc-H.=H,..

Yy = Zaegy o-(r,y) Yp:= ZaeGy o-(x,y1)
Y2 — ZO‘EG g - ($4,y1)

SiceGy,onaoc-Y; =Y,

= Si H(z,y) € C(x,y,t), et c € G;, on a
| o - Hyz. — Hg.yi — Hyi c C(t, O)

= Hy,, Hy,, Hy, € C(t,y) par Galois

-~ 7, est combinaison linéaire des Y;



X X Yo Y
g 82) | (40 41) -

_ 3tx?—t—4 4
ry = Lo+ —I= 40

At(x?41)



Une jolie formule

Théoreme [B., Hardouin 24] Si |'orbite est distance-transitive, alors le
découplage de (x,y) est donné par

=% ¥ (g
i>1 #0 1<25+1<i #Azj  HFAj

_ #yz YQQ B Y2j+1 )
Vy_z#o Z (#ij #XV2,+1

i>1 1<25+1<s




Une jolie formule

Théoreme [B., Hardouin 24] Si |'orbite est distance-transitive, alors le
découplage de (x,y) est donné par

=% ¥ (g
i>1 #0 1<25+1<i #Azj  HFAj

_ #Vi ( Yo Yo )
v ; #0O 1§2JZ+:1§7; #XVo;  F#HVojit1

= évaluations sous forme de sommes de Newton explicites



Retour sur la stratégie d’algébricité

>

Equation Paire d'invariants
fonctionnelle pour » impliquant Q(z,0)
Q(z,y) et Q(0,y)
Découplage de 2 Paire d.’invariants

rationnels
orbite finie

Paire d’invariants

sans poles en
r=0ety=20
4

Q(x,0) et Q0,y)

algébriques

l

Q(x,y) algébrique
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>

Equation Paire d'invariants
fonctionnelle pour » impliquant Q(z,0)
Q(z,y) et Q(0,y)
Découplage de 2 Paire d.’invariants

rationnels

décider ?

Paire d’invariants

sans poles en
r=0ety=20
4

Q(x,0) et Q0,y)
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l

Q(x,y) algébrique




Retour sur la stratégie d’algébricité

>

Equation Paire d'invariants
fonctionnelle pour » impliquant Q(x,0)
Q(z,y) et Q(0,y)
Découplage de xy Paire d.’invarian/ts

rationnels

décider ?

pOles adéquats 7

Paire d’invariants

sans poles en
r=0ety=20
4

Q(x,0) et Q0,y)

algébriques

l

Q(x,y) algébrique




Retour sur la stratégie d’algébricité

Equaﬂon

fonctionnelle pour

Q(,y)

>

Découplage de zy

\

décider ?

Paire d’'invariants

>

impliquant Q(z, 0)
et Q(0,y)

Paire d’ |nvar|ants
ratlon neI

pOles adéquats 7  équation bien fondée ?

Paire d'invariants
sans poles en
r=0ety=20

:

Q(z,0) et Q(0,y)
algebrlques

/

Q(x,y) algébrique




Applications



Applications

e Premieres preuves d'algébricité de modeles a grands pas (conj.
|[Bousquet-Mélou,Bostan,Melczer,18]) + polynéme minimal de la série des excursions
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Applications
e Premieres preuves d'algébricité de modeles a grands pas (conj.
|[Bousquet-Mélou,Bostan,Melczer,18]) + polynéme minimal de la série des excursions

e Conjecture d'algébricité d'une famille infinie de modeles qui étendent le modele de Gessel

A =

Hq Ho Hn

e orbite finie

= DO o =~ ot .

e invariants rationnels explicites

n—1n 41 i e découplage explicite de 2*T1y/ ™! tous les points de départ
(7, 7) conjecturés
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e Montrer le critere orbite finie + xy découple = algébricité
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e Montrer le critere orbite finie + xy découple = algébricité

e Continuer d'exploiter la structure de |'orbite pour d'autres fins



Projets futurs

e Montrer le critere orbite finie + xy découple = algébricité
e Continuer d'exploiter la structure de |'orbite pour d'autres fins

e Découvrir d'autres modeles d'orbite finie + détecter les points de départ algébriques



2. Chemins a petits pas de genre
zéro a bords interactifs
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di,—1

S = {(17 1), (1,-1), (-1, 1)}

(S est un modele)




Chemins a bords interactifs

A
d_ b
1,1 dl,l
®
dy,—1

®

S={(1,1),(1,-1), (=1, 1)}

(S est un modele) l

10 pas “

1 contact avec O,

2 contacts avec O,
4 pas (1,1) 3 pas (1,—1)
3 pas (—1,1)



Chemins a bords interactifs

A
d_ b
b di 1
O
di,—1
O
S={(1,1),(1,-1), (=1, 1)}
(S est un modele) |
a
10 pas
1 contact avec O,
dil 1d§’,_1d§1,1a623}4y4t10 2 contacts avec O,

4 pas (1,1) 3 pas (1,—1)
3 pas (—1,1)



Equation fonctionnelle %
S C

Qlz,y)= ¥ (H de) a"e bty " S(x,9) = X (rpes ar™y’

marches

Sans interaction (a =b=1) :

ryK(z,y)Q(x,y) = zy — tzQ(x,0) — tyQ(0,y) + tQ(0,0)

Cas général :

LCyK(ZE‘,y)Q(CU,y) — % T ’Yl(ajﬂg)Q(x? O) + VZ(ijy)Q(Ovy) T 73(337?/)Q(07 O)



Equation fonctionnelle %
S C

Qlz,y)= ¥ (H de) bty " S(z,y) = > k.es 12"y

marches

Sans interaction (a =b=1) :

vyK(z,y)Q(x,y) = zy — tzQ(x,0) — tyQ(0,y) + tQ(0,0)

Cas général - Méthode du noyau

+-Q z,0) +-Q (0, y) -Q(0,0).




Méthode du noyau

X

ey (2. y)Q(x.y) = 71 (2,1)Q(@,0)+72(2, 1) Q(0, ) +73 (2, y)Q(0,0
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X
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Méthode du noyau

ey (2. y)Q(x.y) = 71 (2,1)Q(@,0)+72(2, 1) Q(0, ) +73 (2, y)Q(0,0




Méthode du noyau

ey (2. y)Q(x.y) = 71 (2,1)Q(@,0)+72(2, 1) Q(0, ) +73 (2, y)Q(0,0

(,y) == (2(s),y(s)) tel que

o K(x(s),y(s)) =0

e les évaluations Q(xz(s),y(s)), Q(xz(s),0)
et Q(0,y(s)) sont bien définies




Méthode du noyau

:CyK(ZE, y)Q(Qj, y) — %—I_fyl ($7 y)Q(CU, O)+/72 (LC, y)Q(Oa y)_l_ﬁ)/S(xv y)Q(Ov 0

(z,y) = (2(s5),y(s)) tel que

o K(x(s),y(s)) =0

e les évaluations Q(xz(s),y(s)), Q(xz(s),0)
et Q(0,y(s)) sont bien définies

\/

H(9(3) 0 = ) (a(s), 9(9)Q().0)

+72(2(s),y(5))Q(0,4(s)) + v3(x(s),y(s))Q(0,0)




Cas particulier : les modeéles de genre 0 [DHRS 18]
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Pl = CU {o0} By = {(z,y) :
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Cas particulier : les modeéles de genre 0 [DHRS 18]

NRNXXKX

Pl = CU {co} E; ={(z,y) : K(z,y) =0} Cc P! x P!

Qb
o 7(s),y(s) € C(s) et K(x(s),y(s)) =0

o Q(x(s),y(s)), Q(x(s),0) et Q(0,y(s)) sont méromorphes pour s

e dg>1,x2(1/s) =x(s) et y(q/s) = y(s) (relevement du groupe)



Evaluation(s) de I’équation

K(z,y)Q(z,y) = w+ 1 (z,y)rQ(z,0) + v (z,y)yQ(0,y)



Evaluation(s) de I’équation

K(z,y)Q(z,y) = w+ 1 (z,y)rQ(z,0) + v (z,y)yQ(0,y)

Evaluation en (z,y) = (2(s),y(s)) pour s € Up :
0 =w+71(s)z(s)Q(x(s),0) + 72(s)y(s)Q(0, y(s))



Evaluation(s) de I’équation

K(z,y)Q(z,y) = w+ 1 (z,y)rQ(z,0) + v (z,y)yQ(0,y)

Evaluation en (z,y) = (2(s),y(s)) pour s € Up :
0 =w+71(s)z(s)Q(x(s),0) + 72(s)y(s)Q(0, y(s))

Evaluation en (z,y) =

|
VN
=
VN
»n
N——"
Ny
VN
[t
N——"
N——"
|

: (:c(g),y(s)) pour s € Uy :
0=w+7(3)z(2)Q(x(3),0) +72(3)y(s)Q(0,y(s))

V)



Evaluation(s) de I’équation

K(z,y)Q(z,y) = w+ 1 (z,y)rQ(z,0) + v (z,y)yQ(0,y)

Evaluation en (z,y) = (2(s),y(s)) pour s € Up :
0 =w+71(s)z(s)Q(x(s),0) + 72(s)y(s)Q(0, y(s))

Evaluation en (z,y) = (2(2),y(3)) = (z(2),y(s)) pour s € Up :

0= w+T(9)2(2)Q(2),0) + F2(2)y(5)Q(0, y(s))

Elimination :

z(3)Q(x(3),0) = u(s) - x(s)Q(x(s),0) + v(s)



Equation aux g-différences et classification

---------------------------------------------------------------------------------------------------------------------------------------



Equation aux g-différences et classification

---------------------------------------------------------------------------------------------------------------------------------------

F(s) = x(s)Q(x(s),0) G(s) =y(s)Q(0,y(s)) pour s € Ug
Q(x,y) algébrique o F(s) et G(s) algébriques
C(x,y) Q(x,y) D-finie o F(s) et G(s) D-finies C(s)

Q(x,y) D-algébrique o F(s) et G(s) D-algébriques
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Rigidité des solutions D-algébriques

Théoreme [Ishizaki 98; Adamczewski, Dreyfus, Hardouin 08]
Les solutions méromorphes sur C d'équations aux g-différences linéaires a coefficients
rationnels sont soit rationnelles soit hypertranscendantes.

Stratégie :
Q(x,y) est D-algébrique < F'(s) est D-algébrique < F'(s) rationnelle

e si (E) a une unique solution, rationnelle, on montre que Q(x,y) est algébrique

e si (E) n'a pas de solution rationnelle, on montre que Q(x,y) est hypertranscendante



Cas sans interaction :

a=b=1




Cas sans interaction : a=b =1

F(2) = F(s) + v(s)

Théoreme [Dreyfus, Hardouin, Roques, Singer 18]

N R XX X




Cas sans interaction : a=b =1

F(3) = F(s) +v(s)

Théoreme [Dreyfus, Hardouin, Roques, Singer 18]

N R XX X

Pour tous les poids d; ;, la série Q(z,y) est hypertranscendante.
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Cas général : a et b quelconques

Theoréme [B. 26+]

N R XX X




Cas général : a et b quelconques b s

F(5) =u(s)F(s) +v(s)

Theoréme [B. 26+]

Nk X

\/ \/

Rationnels ssi a + b =ab Algébrique ssia =b6=2

Pour tous les autres poids a et b, la série Q(z,y) est hypertranscendante.
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Localisation des poles , .
Z€ros poles

e o
= F() = u(s)F(s) + u(s) i

Lemme [B. 264] |l existe des ensembles finis £~ et LT (dépendants de u(s) et v(s))
tels que pour s un pole de F':

esis¢ L alors 3 est un pole de F e si s LT alors gs est un pole de I

Corollaire [B. 264] Si F est une solution rationnelle de (E), et s € {0, 00} est un pdle
de I, alors s est de la forme suivante :

S — qgs— ¢°s — ... — q"s e LT



Localisation des poles , .
Z€ros poles

e — el —
5 F(5) = u(s)F(s) + w(s) 5

Lemme [B. 264] |l existe des ensembles finis £~ et LT (dépendants de u(s) et v(s))
tels que pour s un pole de F':

esis¢ L alors 3 est un pole de F e si s LT alors gs est un pole de I

Corollaire [B. 264] Si F est une solution rationnelle de (E), et s € {0, 00} est un pdle
de I, alors s est de la forme suivante :

»
N
|

qg Mse LT — ... S < ;s — qs— g’s — ... — q"'s LT

S



Localisation des poles , .
Z€ros poles

— ol —
5 F(5) = u(s)F(s) + w(s) 5

Stratégie synthétique

e S'il existe une solution rationnelle F'(s) sans pOles triviaux, alors on a

q

— \‘ﬁeﬁ*

n

s— € L™

e Sinon, toute solution rationnelle a ses pdles dans 0, co.



Localisation des poles sur un exemple

Notation s'il existe n € Z tel que ¢"*s~ = s™ on écrit n, sinon L
_|_
~_ ~ 1 1 53 51
L S1 S2 q q
S1




Localisation des poles sur un exemple

Notation s'il existe n € Z tel que ¢"*s~ = s™ on écrit n, sinon L

LT

—1
L

sia=1
sinon

0 sia+b=ab
—2 sia=b=1
1 sinon

—2 sib=1
1 sinon

1

X



Localisation des poles sur un exemple

Notation s'il existe n € Z tel que ¢"*s~ = s™ on écrit n, sinon L
_|_
L 1 1 S3 Sa
L— S1 S2 q q
—1 sia=1
S1 . —1
L 1 sinon L
0 sia+b=ab
S2 1 1 — Sla = b=
1 sinon
—2 sib=1
q
S3 L 1 sinon

q A1
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Exemple d'un des modeles \tg
e Supposons que a + b # ab et que Q(x,y) est D-algébrique

e F'(s) est rationnelle par rigidité des solutions D-alg des équations aux ¢-différences

e on montre que si a + b # ab, les seuls poles de F' sont 0 et oo

e on montre que F' est nécessairement une fonction de z(s)

= F(s) = P(x(ls)) = 2(s5)Q(x(s),0) = P(x(ls)) = 2Q(z,0) € C[2], absurde

e Si a + b = ab, on trouve une unique solution (!) :

0 ! 0 !
Q($7 ) o 1 L ajafdl,Ot‘l'abdl,—ldO,th Q( 7y) o 1 L bdo,lt—l—abd_l,ldl,otQ
1—abd1,_1d_1,1t2 y 1—abd1,_1d_1,1t2



Bilan b a

Theoréme [B. 26+]

Nk X

\/ \/

Rationnels ssi a + b =ab Algébrique ssia =b6=2

Pour tous les autres poids a et b, la série Q(z,y) est hypertranscendante.



Les cas algébriques

i 1
Q(QZ‘,O) — 1 — ady ot+abdy _1dp 1t?
E L 1—abd1,_1d_1,1t2
5 0 1
a=1+¢ Q0,y) = 1 ybd0,1t+abd_1,1d1,0t2
_ 1 5 Y T abd, _1dq . t2
b=1+2 DT T
1

xr.0) =

E Q( ) ) 1 B 9 4d1,1d1’_1t2

E L 1—4d1,_1d_171t2
i 1

a=0b=2 E Q(O’ y) - 1 2 4did_1,1t
. Y T4d, 1d a2
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Projets futurs

e Comprendre les modeles algébriques de genre 0
e [rouver d'autres modeles algébriques
e [raiter les autres modeles a petits pas

e Reconstituer le diagramme de phases






