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Chapitre 1

Introduction

On commence par présenter la combinatoire énumérative en général, ses outils et
quelques techniques. On présente ensuite les chemins dans le quadrant, qui sont l’objet
d’étude de la thèse.

1.1 Baguenaudage

1.1.1 Dénombrer

La combinatoire énumérative vise à dénombrer des familles d’objets discrets : arbres,
cartes combinatoires, mots, permutations, chemins, etc. Étant donnée une telle famille
d’objets, on veut déterminer le nombre d’objets qui sont d’une certaine taille n. Par
exemple, on peut compter les graphes simples connexes selon leur nombre d’arêtes
(figure 1.1.1), les arbres binaires plans selon le nombre de nœuds internes, les mots
binaires selon leur nombre de lettres évitant un certain motif, etc. En plus de son inté-
rêt propre, cette discipline est en interconnexion avec beaucoup d’autres domaines des
mathématiques, et s’avère également déterminante en informatique, notamment pour
analyser la complexité d’algorithmes.

Une première approche pour le dénombrement consiste en la recherche de bijections
explicites entre les objets que l’on souhaite dénombrer et une famille d’objets que l’on
sait dénombrer. Elle est souvent liée à une compréhension profonde de la structure des
objets étudiés, et donne lieu par exemple à des algorithmes de génération aléatoire, des
algorithmes efficaces manipulant ces objets, des codes, etc.

Cette première approche est souvent difficile. Aussi, lorsque l’on souhaite surtout
obtenir des résultats numériques sur de tels objets, on emploie une seconde approche,
plus systématique, qui fait usage de la notion de série génératrice.

La série génératrice d’une famille d’objets E équipée d’une fonction de taille | · |
(dite classe combinatoire [FS09]) est la série formelle E(t) = ∑e∈E t|e|, où |e| désigne la
taille de l’objet e (par exemple le nombre d’arêtes pour un graphe, le nombre de lettres
pour un mot, etc.). Il est nécessaire que le nombre d’objets d’une certaine taille fixée soit
fini. Le coefficient de tn dans E(t) correspond alors au nombre d’objets de taille n dans

1



1. Introduction

0

1

2

3 4

. . .

G(t) = 1 + t+ t2 + 3t3 + 5t4 + . . .

FIGURE 1.1.1 – Les graphes simples connexes comptés selon leur nombre d’arêtes.

la classe E .
Pour obtenir des informations sur E(t), une technique particulièrement fructueuse

consiste à chercher une description inductive de la famille d’objets considérés, qui se
traduit en équation fonctionnelle sur la série génératrice. Dans bien des cas, cette équa-
tion peut être résolue, donnant une forme explicite pour la série génératrice E(t). Le cas
échéant, des informations partielles peuvent souvent être déduites de l’équation fonc-
tionnelle. On peut notamment obtenir des résultats asymptotiques sur les coefficients
de la série E(t) par des méthodes d’analyse complexe [FS09], ou encore construire des
algorithmes efficaces de calcul des coefficients [Bos+17]. La nature des équations en jeu
permet aussi de quantifier la complexité des objets étudiés. Une fois ce travail effectué,
cette approche basée sur des équations fonctionnelles permet de faciliter l’approche
bijective, en permettant de « deviner » que deux familles d’objets sont en bijection et
donner des indices sur sa recherche.

Des chemins de fortune

Dans la suite de cette introduction, on illustre ces différentes méthodes de manière
plus précise via l’étude d’une famille d’objets « jouet », celle des préfixes de Dyck, qui est
assez simple.

Définition 1.1.1. Un chemin dans Z de longueur n est une suite finie de pas (w1, . . . , wn) ∈
Zn. Étant donnés deux chemins, w = (w1, . . . , wn) et w′ = (w′

1, . . . , w′
m), leur concaté-

nation est définie comme w · w′ = (w1, . . . , wn, w′
1, . . . , w′

m).
Un méandre est un chemin w de longueur n de point de départ 0 et qui reste au

dessus de 0. On veut donc que ∑k
i=1 wi ≥ 0 pour tout k ≤ n. Une excursion est un

méandre qui termine en 0. On veut donc que ∑n
i=1 wi = 0.

2



1. Introduction

Lorsque les pas wi appartiennent à {−1, 1}, les méandres et excursions sont respec-
tivement appelés préfixes de Dyck et chemins de Dyck.

FIGURE 1.1.2 – Un préfixe de Dyck de longueur 10. La dimension horizontale représente le
temps.

1.1.2 Bijections

Une première approche du dénombrement est la recherche d’une bijection entre la
famille d’objets considérée avec un famille d’objets plus simple, dont le dénombrement
est plus facile. Souvent, ces bijections relient également des propriétés structurelles de
ces familles d’objets (par exemple, la bijection classique entre les arbres binaires plans
comptés par nœuds internes et les chemins de Dyck comptés par nombre de pas relie
le nombre de retour en zéro avec la profondeur de la branche la plus à droite). Cela a
par exemple des applications à des algorithmes de génération aléatoire. Par exemple,
on dispose d’un algorithme de génération aléatoire pour les arbres binaires plans (l’al-
gorithme de Rémy [Rém85]), qui est donc directement applicable pour générer aléatoi-
rement des chemins de Dyck.

On présente maintenant un exemple classique d’argument bijectif qui s’applique au
dénombrement des chemins de Łukasiewicz. Un chemin de Łukasiewicz de longueur
n est un chemin (w1, . . . , wn) dont les pas sont dans {−1, 0, . . . }, partant de 0, et tel que
∑k

i=1 wi ≥ 0 pour tout k < n, avec ∑n
i=1 wi = −1.

Étant donné un n-uplet w = (w1, . . . , wn) on définit sa rotation comme le n-uplet

r(w)
def
= (w2, . . . , wn, w1)

et pour tout i ∈ {0, . . . , n} la somme

si(w)
def
=

i

∑
j=1

wj,

qui correspond à l’altitude du chemin w au i-ème pas.

Lemme 1.1.2 (Un lemme cyclique). Si w = (w1, . . . , wn) ∈ {−1, 0, . . . }n est un chemin
terminant en −1, alors il existe un unique k ∈ {0, . . . , n − 1} tel que rk(w) est un chemin de
Łukasiewicz.

3
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r6

FIGURE 1.1.3 – On fait commencer le chemin à la première occurrence du record minimal

Démonstration. Soit h = min
{

si(w) : i ∈ {1, . . . , n}
}

la hauteur minimale atteinte par
le chemin, et k = min{k ∈ {1, . . . , n} : sk(w) = h} l’indice du pas de w qui réalise cette
hauteur en premier (voir la Figure 1.1.3). En particulier, si i ≥ k, on a si(w) ≥ sk(w) et
si i < k, on a si(w) > sk(w).

Considérons i, j ∈ {0, . . . , n − 1} avec i ̸= j. Si i < j, alors

sj−i(ri(w)) = wi+1 + · · ·+ wj

= sj(w)− si(w).

D’autre part, si i > j, alors

sn−i+j(ri(w)) = wi+1 + · · ·+ wn + w1 + · · ·+ wj

= sn(w)− (wj+1 + · · ·+ wi)

= −1 + sj(w)− si(w).

On déduit de ces deux calculs avec i = k que rk(w) est un chemin de Łucasiewicz.
D’autre part, on déduit de ces deux calculs avec j = k que seul ce k convient.

Via le lemme cyclique, on en déduit entre autres une formule close du nombre de
chemins de Dyck.

Corollaire 1.1.3. Le nombre de chemins de Dyck de longueur 2n vaut

1
2n + 1

(
2n + 1

n

)
.

Démonstration. On note

Wn = {(w1, . . . , wn) ∈ {−1, 1}n : sn(w) = −1}
Dn = {(w1, . . . , wn) ∈ {−1, 1}n : w est un chemin de Dyck}.

Considérons l’application

ϕ : {0 . . . 2n} × D2n → W2n+1

(k, w) 7→ rk(w1, . . . , w2n,−1).

4



1. Introduction

Le lemme cyclique 1.1.2 dit exactement que ϕ est une bijection. Elle est surjective : étant
donné w′ ∈ W2n+1, le lemme cyclique donne un unique k ∈ {0, . . . , 2n} tel que si w · z =
r2n−k(w′) avec z{−1, 1}, le 2n-uplet w est un préfixe de Dyck. Puisque w · z termine en
−1, cela impose que z < 0. Puisque z ∈ {−1, 1}, on a nécessairement z = −1, et que
w est un chemin de Dyck. Ainsi, w′ = ϕ(k, w). Elle est injective : si ϕ(w) = ϕ(w′) et
k ≥ k′, alors rk−k′(w · (−1)) = w′ · (−1). Puisque w′ et w sont des préfixes de Dyck, le
lemme cyclique impose que k = k′, et donc que w = w′. Aussi, on calcule le nombre de
chemins de Dyck de longueur 2n comme

#D2n =
#W2n+1

2n + 1
=

1
2n + 1

(
2n + 1

n

)
Il faut noter que la version présentée ici du lemme cyclique est restreinte. On peut en

effet démontrer plus généralement que tout chemin utilisant les pas {−1, 0, . . . } com-
mençant en 0 et terminant en −h− 1 est conjugué à une concaténation de h+ 1 chemins
de Łukasiewicz, et ce de h + 1 manières différentes (voir [Sta24, sec. 5.3] pour un déve-
loppement). Via cet argument, on peut démontrer que le nombre de préfixes de Dyck
de longueur 2n + h terminant à une hauteur h vaut

h + 1
2n + h + 1

(
2n + h + 1

n

)
.

1.1.3 Séries génératrices et méthode symbolique

Bien que la construction de bijections soit une manière particulièrement élégante
de dénombrer des objets, cette méthode demeure assez difficile à mettre en place. Elle
nécessite en effet de saisir avec profondeur la structure des objets à dénombrer. Aussi,
lorsque l’on souhaite avant tout des résultats numériques (quitte à ensuite trouver une
bijection à partir de l’intuition conférée par ces résultats), on emploie la méthode de la
« Generatingfunctionology » [Wil06].

Depuis Euler, on sait en effet que les séries génératrices sont un outil extrêmement
puissant en combinatoire, et ce par le lien intime qu’il existe entre les constructions
inductives d’objets (union disjointe, produit cartésien, etc) et les opérations algébriques
sur les séries génératrices correspondantes (addition, multiplication, etc). Par suite, on
obtient aisément des équations fonctionnelles sur les séries génératrices, que l’on peut
alors soit résoudre explicitement, ou dont on peut du moins extraire des informations
partielles sur la série génératrice solution.

On peut notamment trouver des relations de récurrence sur les coefficients, ou en-
core, et c’est l’objet de la combinatoire analytique, obtenir des estimations fines de leur
comportement asymptotique. En effet, on peut dans de nombreux cas voir la série for-
melle comme une fonction d’une variable complexe, analytique en 0. L’asymptotique
des coefficients se lit alors sur la position et la nature des singularités de la fonction au
bord de son disque de convergence. Pour une très large classe de fonctions, l’asympto-
tique se détermine alors automatiquement. Pour d’autres types de séries vérifiant cer-
taines équations (équations algébriques, équations différentielles), il est aussi possible
d’obtenir des résultats asymptotiques sur les coefficients [FS09].
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Séries formelles

On commence par introduire les séries formelles, comme généralisation des poly-
nômes.

Définition 1.1.4. Soit R un anneau commutatif, et t une indéterminée. L’ensemble des
séries formelles sur R, noté RJtK, est défini comme l’ensemble des suites ( fi)i∈N ∈ RN,
notées

F(t) = ∑
n≥0

fntn.

L’ensemble RJtK a une structure d’anneau commutatif, où la somme et le produit de
F(t) = ∑n≥0 fntn et G(t) = ∑n≥0 gntn sont définis comme

F(t) + G(t) def
= ∑

n≥0
( fn + gn)tn

F(t) · G(t) def
= ∑

n≥0

(
n

∑
i=0

fi gn−i

)
tn.

L’anneau des polynômes sur R en l’indéterminée t, noté R[t], est naturellement un
sous-anneau de RJtK correspondant aux suites nulles à partir d’un certain rang. Les
notations définies ci-dessous s’y appliqueront donc.

On note R((t)) l’anneau des séries de Laurent sur R, défini comme la localisation de
RJtK en t, soit les séries de la forme H(t)/tm pour un certain m > 0 et H(t) une série
formelle. On les note également

F(t) = ∑
n≥−m

fntn

Étant données F(t) et G(t) deux séries de Laurent en t, on note F(t) = G(t) +O(tn)
si F(t)− G(t) = tnH(t) pour H(t) une série formelle. On note [tn]F(t) = fn le n-ième
coefficient de F(t).

Si F(t) = f−mt−m + O(t−m+1) est une série de Laurent avec f−m ̸= 0, on définit
sa valuation v(F) = −m. L’application v : R((t)) → Z vérifie v(FG) = v(F) + v(G) et
v(F + G) ≥ min{v(F), v(G)}.

Si t et t′ sont deux indéterminées sur R, les anneaux (RJtK) Jt′K et (RJt′K) JtK sont
isomorphes. On note alors RJt, t′K cet anneau l’anneau des séries formelles à deux va-
riables. Par suite, si t1, . . . , tn sont des indéterminées, on notera RJt1, . . . , tnK l’anneau
des séries formelles sur les variables t1, . . . , tn. Si F(t1, . . . , tn) ∈ RJt1, . . . , tnK est une
série formelle, on peut la voir comme une série formelle de (RJt1, . . . , tn−1K) JtnK. On
définit alors [ti

n]F(t1, . . . , tn) comme le coefficient en ti
n de cette série en tant que série

en tn. En général, si m = td1
1 . . . tdn

n est un monôme, on définira inductivement

[td1
1 . . . tdn

n ]F(t1, . . . , tn) = [tdn−1
n ]([td1

1 . . . tdn
n−1]F(t1, . . . , tn)).
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Proposition 1.1.5 (Section 3.1 de [Bos+17]). Soit (Ak(t))k une suite de séries formelles telles
que Ak(t) = O(tvk) avec vk → ∞. Alors il existe une unique série formelle notée ∑k≥0 Ak(t)
caractérisée de la manière suivante. Pour tout n ≥ 0, il existe un k0 ≥ 0 tel que pour tout
k ≥ k0, on a (

∑
i≥0

Ai(t)

)
=

k

∑
i=0

Ai(t) + O(tn).

Exemple 1.1.6. 1. Si A(t) est une série formelle telle que A(t) = O(t), et B(t) =

∑n≥0 bntn est une série formelle, alors la suite de séries formelles (A(t)k)k vérifie
A(t)k = O(tk), ce qui assure que la somme ∑k≥0 bk A(t)k définit bien une série
formelle, correspondant à la composition B(A(t)).

2. Si A(t) = O(t), on définit son pseudo-inverse ∑n≥0 A(t)n, qui est l’inverse multi-
plicatif de la série 1− A(t). Il vient que toute série formelle A(t) = f0 +O(t) avec
f0 inversible dans R est inversible dans RJtK.

Exemple 1.1.7 (Point fixe et définition inductive). Soit F(x, t) ∈ QJx, tK une série for-
melle. On considère l’équation

X = tF(X, t) (1.1.1)

d’inconnue X. Cette équation, dite de point fixe admet une unique solution x(t) ∈ QJtK.
En effet, pour une série formelle y(t) = O(t), la composition tF(y(t), t) est bien

définie. Cela permet de définir une application ϕ : tQJx, tK 7−→ tQJx, tK définie par
ϕ(y(t)) = tF(y(t), t). Si x(t) et y(t) sont dans O(t), on a par la formule de Taylor [Bos+17,
sec. 3.1] que

ϕ(y(t)) = ϕ(x(t)) + (y(t)− x(t)) · O(t).

Ainsi, en définissant la suite de polynômes An(t)
def
= ϕn(0) (ϕn étant l’itération de la

composition), on a par l’identité ci-dessus et par récurrence que si m ≥ n, alors Am(t) =

An(t) + O(tn+1). Par la proposition 1.1.5, on a que x(t) def
= ∑n≥0(An+1(t)− An(t)) dé-

finit bien une série formelle, qui par construction est l’unique solution de l’équation
(1.1.1). En effet, pour tout n, on a x(t) = An(t) +O(tn+1), donc par la formule de Taylor
on a

ϕ(x(t)) = ϕ(An(t)) + O(tn+1) = An+1(t) + O(tn+1) = x(t) + O(tn+1),

ce qui permet de conclure.
Par exemple, étant donnée F(t) ∈ QJtK une série formelle de la forme F(t) = t +

t2V(t) avec V(t) une série formelle, on peut définir la série formelle G(t) = 1
1+tV(t) ∈

QJtK (comme un pseudo-inverse). Par la discussion précédente, l’équation

X = tG(X)

a une unique solution x(t) ∈ QJtK, qui vérifie par construction F(x(t)) = t. La série x(t)
est donc l’inverse compositionnel à droite de F(t). ■

Les équations de point fixe interviennent très souvent dans un contexte combina-
toire pour des objets définis inductivement, via la méthode symbolique que l’on pré-
sente juste après.
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Classes combinatoires

On introduit maintenant le concept de classe combinatoire. Si cette notion n’est pas
indispensable pour faire de la combinatoire, elle donne un cadre formel pour assurer un
dictionnaire entre des objets issus de la combinatoire et leurs séries formelles associées
(dites séries génératrices). La présentation élémentaire ci-dessous provient essentielle-
ment du livre Analytic Combinatorics de Flajolet et Sedgewick [FS09], mais d’autres dé-
finitions plus générales existent, via par exemple la théorie des espèces combinatoires,
qui permet notamment de dénombrer des objets à automorphisme près (voir l’ouvrage
de référence [BLL98]).

Définition 1.1.8. Une classe combinatoire A est la donnée d’une paire (A, | · |) où A est
un ensemble et | · | : A → N définit une partition de A en ensembles finis {x ∈ A :
|x| = n}. On note A ≃ B s’il existe une bijection σ : A → B telle que pour tout a dans
A, |σ(a)| = |a|.

Définition 1.1.9. Étant données deux classes combinatoires, A et B, on a (entre autres)
les constructions suivantes :

— Atome neutre : 1 = ({∗}, (| ∗ | = 0))

— Atome unité : T = ({∗}, (| ∗ | = 1))

— Union disjointe : A+ B = (A⊎ B, 1A · | · |A + 1B · | · |B)
— Produit cartésien : A×B = (A×B, (|(x, y)| = |x|A + |y|B))
— Séquence : Seq(A) = 1 +A+A2 + . . . . Cette construction ne fonctionne que si A

n’a pas d’objet de taille nulle (auquel cas, il y aurait une infinité d’objets de taille
0 dans Seq(A) avec cette définition).

Exemple 1.1.10. On liste ici diverses classes combinatoires associées à des objets usuels.

— Mots binaires On définit S la classe des mots sur l’alphabet {0, 1}, la taille d’un
mot étant le nombre de lettres qui le composent. Un mot est soit vide, soit est la
concaténation de la lettre 0 ou de la lettre 1 avec un mot quelconque. Si on note T0
l’atome correspondant à la lettre 0, et T1 l’atome correspondant à la lettre 1, cela
se traduit en

S ≃ 1 + T0 × S + T1 × S .

Plus directement, un mot est une suite finie de lettres, donc on a

S ≃ Seq(T0 + T1).

— Arbres binaires plans On définit A la classe des arbres binaires plans, la taille d’un
arbre étant son nombre de nœuds internes. Un arbre binaire plan est soit composé
d’un seul nœud (qui n’est pas interne), soit constitué d’un nœud interne et de
deux sous-arbres. Si on note Tint l’atome correspondant à un nœud interne, cela
se traduit en

A ≃ 1 + Tint ×A×A.

■
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De la même manière que dans l’exemple 1.1.7 où dans certaines conditions il est pos-
sible de définir une série formelle via une équation de point fixe, on peut définir sous
certaines conditions une classe combinatoire comme unique solution (à isomorphisme
de classe combinatoire près) d’une équation de point fixe de classes combinatoires, via
la notion de construction admissible (voir [FS09, sec. I.2]). Aussi, les isomorphismes de
classes combinatoires constatés dans l’exemple 1.1.10 pour des classes définies au préa-
lable, auraient suffi à spécifier les classes S et A.

Définition 1.1.11 (Série génératrice ordinaire). Soit A une classe combinatoire. On dé-
finit A(t) la série génératrice ordinaire de A comme la série formelle

A(t) def
= ∑

a∈A
t|a|,

de sorte que #{a ∈ A : |a| = n} = [tn]A(t).

Cette définition trouve sa pertinence dans la correspondance suivante entre les opé-
rations sur les classes combinatoires et leurs séries génératrices ordinaires respectives.

Proposition 1.1.12. Il y a la correspondance suivante entre ces constructions de classes combi-
natoires et leurs séries génératrices respectives.

Classe combinatoire Série génératrice
1 1
T t

A+ B A(t) + B(t)
A×B A(t) · B(t)
Seq(A) (1 − A(t))−1

Dans la majorité des cas, on se contentera de décrire directement l’équation fonc-
tionnelle vérifiée par la série génératrice d’une classe combinatoire définie inductive-
ment, étant donné cette transparence vis-à-vis des constructions algébriques de classes
combinatoires. On note que deux classes combinatoires équivalentes ont la même série
génératrice ordinaire.

Exemple 1.1.13 (Composition d’entiers). Un entier naturel non nul s’identifie à son
développement en unaire, dont le nombre de chiffres correspond à sa taille (on a |n| =
n). On a donc que la classe des entiers naturels non-nuls est donnée par

E ≃ T × Seq (T )

Une composition d’entiers se voit comme une suite d’entiers naturels non nuls (dont la
taille est la somme des entiers qui la compose), on a donc

C ≃ Seq (E) .
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Ainsi, la série génératrice des entiers naturels non nuls vaut

E(t) =
t

1 − t
,

et la série génératrice des compositions d’entiers vaut

C(t) =
1

1 − t
1 − t

=
1

1 − 2t
− t

1 − 2t
.

On retrouve alors qu’il y a 2n−1 compositions d’entiers sommant à n lorsque n ≥ 1. ■

On regarde maintenant plus de paramètres associés aux objets dénombrés.

Définition 1.1.14. Soit A une classe combinatoire. Une statistique χ est une application
de A dans N. On regarde χ = (χ1, . . . , χd) une famille finie de statistiques sur A.
Étant donnée une telle paire < A, χ >, et x1, . . ., xn des variables, on définit sa série
génératrice

A(t) def
= ∑

a∈A
xχ1(a)

1 . . . xχd(a)
d t|a|.

Sans plus rentrer dans les détails formels (voir [FS09, sec. III.3]), pour la plupart des
statistiques considérées et naturelles, le dictionnaire de la méthode symbolique vaut
toujours, c’est-à-dire que pour des classes combinatoires munies de statistiques sup-
plémentaires, les opérations d’union disjointe et produit cartésien donnent lieu à des
sommes et produits des séries génératrices correspondantes.

Exemple 1.1.15. Soit A la classe des mots binaires sans le motif 000, où l’on compte le
nombre de fois k où 0 apparaît. Alors sa série génératrice

A(x, t) = ∑
n≥0

an,kxktn

où an,k = #{w ∈ A : w a n lettres et 0 apparaît k fois} se détermine inductivement sur
le nombre de lettres. On considère les classes Ai des mots de A dont le plus grand
suffixe constitué de 0 est de longueur i, et on note Td la classe de la lettre d ∈ {0, 1}. On
note Ai(x, t) la série génératrice correspondante à Ai. Par induction sur la longueur du
mot, ces classes combinatoires vérifient les relations suivantes :

A0 ≃ ε +A0 × T1,
A1 ≃ A0 × T0,
A2 ≃ A1 × T0,
A ≃ A0 +A1 +A2.
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Ces équivalences se traduisent en un système linéaire sur les séries génératrices

A0(x, t) = 1 + A(x, t) · t,
A1(x, t) = A0(x, t) · (xt),
A2(x, t) = A1(x, t) · (xt),
A(x, t) = A0(x, t) + A1(x, t) + A2(x, t).

En résolvant ce système, on obtient pour A(x, t) l’expression

A(x, t) =
1 + xt + x2t2

1 − t − xt2 − x2t3 .

■

Cet appareil formel étant posé, on revient désormais à notre exemple fil rouge des
préfixes de Dyck.

Exemple 1.1.16 (Préfixes de Dyck II). On considère A la classe des préfixes de Dyck,
la taille d’un préfixe de Dyck c étant son nombre de pas. Étant donné un préfixe de
Dyck c, on considère deux statistiques : nx le nombre de fois où c atteint 0 (les contacts),
et i l’altitude finale de c. Lorsque l’on considère la statistique des contacts avec l’axe,
on parle de chemins à bords interactifs. On définit pour tout i la classe Di des chemins
commençant et terminant à l’altitude i, et restant au dessus de i à tout instant. La classe
des chemins de Dyck est donc D0. On note

Di(a, t) = ∑
c∈Di

anx t|c|

et
A(x, a, t) = ∑

c∈A
xianx t|c|.

Di+1 Di

i

i+ 1

...

FIGURE 1.1.4 – Décomposition des chemins de Dyck

Dans un premier temps, on a naturellement (Figure 1.1.4) la décomposition

Di ≃ 1 + T↑ ×Di+1 × T↓ ×Di.
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Elle se traduit en deux identités de séries génératrices, selon que i est nul ou non. On a
d’une part que Di(a, t) = D1(a, t) pour tout i ≥ 1, étant donné qu’il n’y a pas de contact
avec les axes. Ces séries sont indépendantes de a, donc on les écrit Di(t). Aussi, on a

D1(t) = 1 + (xt) · D1(t) · (t/x) · D1(t). (1.1.2)

D’autre part, pour D0(a, t), le premier pas descendant de 1 à 0 non trivial ajoute un
contact avec l’axe des abscisses, ce qui donne l’équation

D0(a, t) = 1 + (xt) · D1(t) · (at/x) · D0(a, t). (1.1.3)

0

1

2

3

4

5

6

D0 D1

D2

D4

FIGURE 1.1.5 – Décomposition des préfixes de Dyck

Dans un second temps, on peut décomposer Ai la classe des préfixes de Dyck ter-
minant à l’altitude i comme dans la figure 1.1.5, ce qui donne l’équivalence

Ai ≃ D0 × T↑ ×D1 × · · · × T↑ ×Di.

Puisque par définition A = A0 +A1 + . . . , on obtient alors la décomposition

A ≃ D0

+D0 × T↑ ×D1

+D0 × T↑ ×D1 × T↑ ×D2

+ . . .

On obtient alors finalement l’équation

A(x, a, t) = D0(a, t) · ∑
i≥0

(xtD1(t))i =
D0(a, t)

1 − xtD1(t)
. (1.1.4)

En combinant (1.1.2), (1.1.3) et (1.1.4), on peut donc déterminer explicitement la série
génératrice A(x, a, t) des préfixes de Dyck avec statistiques de la hauteur finale et du
nombre de contacts

A(x, a, t) =
1

(1 − at2D1(t)) (1 − xtD1(t))
,

avec D1(t) =
1 −

√
1 − 4t2

2t2 .

(1.1.5)

■

12



1. Introduction

1.1.4 Équations aux variables catalytiques

On a vu dans la section précédente que l’on pouvait se dispenser de la recherche
d’une bijection astucieuse pour dénombrer des préfixes de Dyck, via une décompo-
sition inductive. Cette décomposition donnant lieu à une équation algébrique assez
simple sur les séries génératrices, elle donne une expression explicite de la série géné-
ratrice, que l’on peut ensuite manipuler afin d’extraire des informations sur les objets
dénombrés. En outre, la flexibilité de cette approche permet d’incorporer au dénombre-
ment diverses statistiques associées aux chemins dénombrés.

Néanmoins, cette décomposition inductive bien connue des préfixes de Dyck repose
sur le fait qu’il n’y a qu’un seul type de pas descendant. La Generatingfunctionology
permet toutefois de se dispenser de trouver une telle décomposition ingénieuse pour
obtenir des informations sur la série génératrice, via des variables catalytiques (le terme
est dû à Doron Zeilberger).

Exemple 1.1.17 (Préfixes de Dyck III). Soit A la classe des préfixes de Dyck telle que
définie dans l’exemple 1.1.16. On réintroduit aussi Ai la classe des préfixes de Dyck
qui terminent à l’altitude i, et A>i la classe des préfixes de Dyck qui terminent à une
altitude strictement plus grande que i.

On définit encore la série formelle de A comme A(x, a, t) def
= ∑c∈A xianx tn, avec i

l’altitude finale, nx le nombre de contacts, et n le nombre de pas de c. Puisque R[x]JtK ⊂
RJx, tK, on peut définir A0(a, t) = [x0]A(x, a, t) et xA1(a, t) = x[x1]A(x, a, t), qui par
définition sont les séries génératrices associées aux classes A0 et A1.

Pour former une équation aux variables catalytiques sur A(x, a, t), on va simple-
ment décrire inductivement les chemins selon leur nombre de pas, en maintenant la
statistique de la hauteur terminale d’un chemin, qui est codée via la variable catalytique
x. Selon cette description, un préfixe de Dyck est soit

— un préfixe de Dyck trivial, sans pas,

— un préfixe de Dyck auquel on a ajouté l’un des deux pas, +1 ou −1. L’ajout du
pas 1 est possible à la fin de tout chemin, tandis que celui du pas −1 ne peut se
faire que si le chemin termine strictement au dessus de l’axe.

Cette description inductive se traduit en l’équation

A ≃ 1 + T↑ ×A+ T↓ ×A>1 + T↓ ×A=1.

On obtient alors une équation fonctionnelle sur la série génératrice A(x, a, t), qui est

A(x, a, t) = 1 + (tx) · A(x, a, t)

+
t
x
·
(

A(x, a, t)− xA1(a, t)− A0(a, t)
)
+

at
x
· (xA1(a, t)).

(1.1.6)

Cette équation donne une relation de dépendance polynomiale entre la série A(x, a, t),
et des séries qui ne dépendent pas de la variable x, à savoir A1(a, t) et A0(a, t), elles
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aussi inconnues, que l’on appelle des sections. On regroupe donc les termes correspon-
dant à A(x, a, t) à gauche de l’équation, et on multiplie le tout par x pour obtenir

K(x, t)A(x, a, t) = x + (a − 1)xtA1(a, t)− tA0(a, t)

où K(x, t) = x − t(1 + x2).
(1.1.7)

Cette équation est qualifiée d’équation à noyau, le nom provenant de celui du po-
lynôme K(x, t) qui est en facteur de A(x, t) dans le côté gauche de l’équation. Le côté
droit de l’équation a la particularité que les fonctions inconnues qui subsistent sont
indépendantes de la variable x. Cette configuration permet alors à elle seule de déter-
miner les séries A1(t), A0(t) et A(x, t), via la méthode du noyau (voir [Knu69, p.536-537]).
Elle consiste à trouver des relations algébriques entre les séries inconnues du membre
de droite en évaluant l’équation sur des séries formelles x(t) telles que K(x(t), t) = 0
(d’où le qualificatif de noyau).

Étudions donc l’équation K(x(t), t) = 0. On trouve deux racines, dont

x0(t) =
1 −

√
1 − 4t2

2t
= t + t2 + 2t3 + O(t4)

qui est une série formelle en t. Puisque A(x, a, t) = ∑i≥0 xi Ai(a, t) est une série formelle
à coefficients polynomiaux en x, la composition A(x0(t), a, t) est bien définie. Ainsi, on
peut évaluer l’équation en x = x0(t), ce qui donne une première relation

0 = x0(t) + (a − 1)x0(t)tA1(a, t)− tA0(a, t). (1.1.8)

D’autre part, en utilisant le fait que A(x, a, t) = A0(a, t) + xA1(a, t) + O(x2), l’in-
jection de cette identité dans l’équation donne en considérant le coefficient en x l’autre
relation

A0(a, t)− tA1(a, t) = 1 + (a − 1)tA1(a, t) (1.1.9)

en considérant le coefficient de x. Cette identité se voit également combinatoirement :
un chemin terminant en 0 est soit trivial, soit un chemin qui termine en 1 suivi d’un
pas descendant donnant lieu à un contact. Cependant il faut noter qu’on l’a obtenue
uniquement via l’équation fonctionnelle.

Via ces deux équations, on retrouve les expressions de A0(a, t) et A1(a, t) comme

A0(a, t) =
x0(t)

x0(t) + at − ax0(t)

A1(a, t) =
x0(t)− t

t(ax0(t)− at − x0(t))
.

En réinjectant ces expressions dans l’équation (1.1.7), on retrouve la même expression
de A(x, a, t) qu’en (1.1.5). ■
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1.1.5 Analyse de singularités

On a vu dans les sections précédentes diverses manières d’obtenir les expressions
de séries génératrices pour des objets combinatoires, notamment la série génératrice
A(x, a, t) des préfixes de Dyck à bords interactifs. Il s’agit à présent d’exploiter cette
expression, et on choisit ici de présenter l’analyse de singularités, qui permet d’obtenir
assez facilement des développements asymptotiques pour les coefficients d’une série
formelle. La connaissance de cette asymptotique permet notamment d’établir des com-
portements limites pour des objets de grande taille. On se contentera de rappeler ici ce
résultat * :

Proposition 1.1.18 (Corollaire VI.1 dans [FS09]). Soit ∑n≥0 antn ∈ CJtK une série entière
qui admet un prolongement analytique A(t) sur l’ouvert D(0, r) \ [ρ, ∞[ pour un r > ρ > 0
(on rappelle que D(0, r) est le disque ouvert centré en 0 de rayon r). Alors si A(t) ∼ (1− t/ρ)α

au voisinage de 1 pour un certain α < 0, on a an ∼ ρ−n n−α−1

Γ(−α)
. Pour une série admettant

un nombre fini de telles singularités, il suffit de sommer leurs contributions en le rayon de
convergence afin d’avoir l’asymptotique globale des coefficients.

On définit une probabilité sur les préfixes de Dyck de longueur n comme suit. Étant
donné un nombre réel positif a, si c est un préfixe de Dyck de longueur n avec nx
contacts avec l’axe, on définit son poids comme anx . On définit alors une probabilité
sur les préfixes de longueur n de sorte que le chemin c soit pondéré par anx , i.e. la
probabilité de c vaut

Pn(c) =
anx

[tn]A(1, a, t)
.

On propose d’étudier le comportement limite de trois quantités définies sur ces
marches. On note Xn la variable aléatoire sur les marches de taille n qui correspond
à l’altitude finale, et Zn le nombre de contacts avec 0. On cherche alors à déterminer :

1. La probabilité limite de terminer en 0, définie par

p0
def
= lim

n
Pn(Xn = 0) = lim

n

[tn]A(0, a, t)
[tn]A(1, a, t)

.

2. L’asymptotique de la hauteur moyenne où termine la marche, définie par

h(n) def
= E(Xn) =

[tn](x∂x A)(1, a, t)
[tn]A(1, a, t)

.

3. L’asymptotique du nombre moyen de contacts avec l’axe, soit

c(n) def
= E(Zn) =

[tn](a∂a A)(1, a, t)
[tn]A(1, a, t)

.

*. Le théorème de transfert [FS09, Theorem VI.1] donne des conditions plus générales sur la fonction
A(t) pour relier son comportement asymptotique au bord du disque de convergence avec le comporte-
ment asymptotique des coefficients. La condition plus faible énoncée dans la proposition 1.1.18 suffit dans
notre cas, où l’on étudie des branches de séries algébriques (définies en section 1.1.6).
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a < 2 a = 2 a > 2

[tn]A(1, a, t)
√

2√
π(2−a)n−1/2 2n 2n−1 (−2+a)(a−

√
a−1−1)

2(a−1)(a−2
√

a−1)
r−n

[tn]A(0, a, t) a
√

2√
π(2−a)2 n−3/2 2n

√
2
π n−1/2 2n−1 a−2

2(a−1) r−n

[tn](x∂x A)(1, a, t) 1
2−a 2n

√
2
π n1/2 2n−1 a−2

2
√

a−1(
√

a−1−1)
r−n

[tn](a∂a A)(1, a, t) a
√

2√
π(2−a)2 n−1/2 2n

√
2
π n1/2 2n−1 (a−2)2

4(a−1)3/2(
√

a−1−1)
n r−n

(a) Asymptotiques des séries intermédiaires

a < 2 a = 2 a > 2
p0 0 0 1 − 1√

a−1

h(n)
√

π
2 n1/2

√
2
π n1/2 a−2

2(a−1)

c(n) a
2−a

√
2
π n1/2 1−(a−1)2

1+(a−1)1/2
n
4

(b) Statistiques limites

FIGURE 1.1.6 – Comportements asymptotiques obtenues via l’étude de A(x, a, t) (on note r =√
a−1
a )

Puisque la série A(x, a, t) satisfait une équation polynomiale de degré 2 à coeffi-
cients dans Q(x, a, t) (voir (1.1.5)), les séries A(1, a, t), A(0, a, t), (x∂x A)(1, a, t) et (a∂x A)(1, a, t)
satisfont des équations de degré 2 à coefficients dans Q(a, t). De fait, en spécialisant a à
un réel positif, la proposition 1.1.18 s’applique à ces séries, et on pourra déterminer le
comportement asymptotique des quantités définies ci-dessus via l’analyse des singula-
rités de ces séries.

Les calculs sont détaillés dans la feuille Maple relative à cette section. Pour chacune
de ces fonctions, on suit les étapes suivantes :

— On détermine le polynôme minimal de la série concernée.

— Via [FS09, th. VII.7], on identifie une liste finie de candidats possibles pour être
la singularité dominante (la plus proche de l’origine) de la fonction concernée.
On effectue alors un développement asymptotique de la solution au voisinage de
cette valeur via la méthode de Newton [FS09, Th. VII.1]. La singularité dominante
est alors la plus petite valeur qui donne lieu à une singularité.

— On applique la proposition 1.1.18 à la fonction pour obtenir le tableau 1.1.6a, puis
par quotient des estimations on en déduit le tableau 1.1.6b.

L’interprétation du tableau 1.1.6b permet de déterminer trois comportements pos-
sibles selon la valeur de a, illustrés en figure 1.1.7 :

— Pour a < 2, on a que la hauteur moyenne finale h(n) tend vers l’infini, et que
le nombre de contacts c(n) est borné. Aussi, on caractérise ce comportement de
répulsif (la marche s’éloigne de l’axe).
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a < 2 a = 2 a > 2

FIGURE 1.1.7 – Trois comportements limites

— Pour a = 2, on a à la fois que la hauteur moyenne finale h(n) et que le nombre
de contacts c(n) tendent vers l’infini. On caractérise ce comportement de critique,
au sens où il mélange les deux caractéristiques répulsive et attractive. La marche
termine arbitrairement haut tout en maintenant un nombre élevé de contacts.

— Pour a > 2, on a que la hauteur moyenne h(n) est finie, et que le nombre de
contacts c(n) est linéaire, on caractérise ce comportement d’attractif (la marche
reste très proche de l’axe).

1.1.6 Nature des séries

Avant de passer à proprement à parler à la présentation des marches contraintes,
on définit dans cette section une hiérarchie de séries formelles, dite algébro-différentielle,
qui donne une mesure de la complexité des séries formelles en plusieurs variables, qui
en retour traduit la complexité des objets dont elles sont les séries génératrices. Par
souci de simplicité, on considère des séries formelles dans C[x, y]JtK, mais les notions
s’étendent naturellement à plus d’indéterminées.

Séries rationnelles

Définition 1.1.19. Une série formelle A(x, y, t) ∈ C[x, y]JtK est dite rationnelle si elle
peut s’écrire A(x, y, t) = P(x,y,t)

Q(x,y,t) pour P(x, y, t) et Q(x, y, t) dans des polynômes en x, y
et t.

Les séries rationnelles ont été étudiées de manière intensive, et dans le cas d’une
seule variable (série dans C(t)), presque toutes les questions asymptotiques [FS09, th.
IV.5.1] ou de calcul [Bos+17] à leur sujet sont résolues (il reste toutefois des problèmes
difficiles, par exemple le problème de Skolem [Tao07]). Dans un contexte combinatoire,
les séries rationnelles sont souvent associées à des séries génératrices de langages ra-
tionnels †, de chemins dans un graphe fini, ou des chemins non-contraints. Les séries
rationnelles forment un sous-anneau de l’anneau C[x, y]JtK.

†. On a notamment le théorème de représentation de Kleene-Schutzenberger qui donne l’équivalence
entre le fait qu’une certaine série formelle associée à un langage soit N-rationnelle (ici, cela veut dire
construite à partir de l’addition, du produit et du pseudo inverse 1

1−z ) et la reconnaissance de ce langage
par un automate [Sak09, Theorem 3.5].
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Séries algébriques

Une généralisation naturelle de la notion de série rationnelle est la notion de série
algébrique. On rappelle brièvement ici que si k est un sous-corps de L, un élément α
de L est algébrique sur k s’il existe un polynôme P(Z) ∈ k[Z] tel que P(α) = 0 (voir la
définition 2.1.2) C’est donc tout naturellement que l’on définit les séries algébriques.

Définition 1.1.20. Une série formelle A(x, y, t) est dite algébrique s’il existe un polynôme
non-nul P ∈ C[F, x, y, t] tel que P(A(x, y, t), x, y, t) = 0.

Les séries algébriques sont typiquement associées à des langages décrits par des
grammaires hors-contextes non-ambiguës ou des séries génératrices de chemins contraints
dans un demi-plan. Elles forment un anneau.

Étant donné un polynôme à coefficients dans C(t), ses racines ont la particularité
d’avoir une description explicite, via les séries de Puiseux.

Définition 1.1.21. Soit K un corps algébriquement clos de caractéristique nulle. On
définit l’anneau des séries fractionnaires en t comme la limite inductive (grosso modo la
réunion des anneaux)

K f racJtK def
= lim

d→∞
KJt1/dK

Puisque que KJt1/dK et KJt1/d′K sont dans KJt1/(dd′)K, on peut définir la somme et le
produit de deux séries de Puiseux en les considérant comme des séries formelles en
t1/d pour un d assez grand. Le corps des fractions de K f racJtK est appelé corps des séries
de Puiseux, et est noté K f rac((t)). Si

F(t) = a−m/dt−m/d + O(t(−m+1)/d)

avec a−m/d ̸= 0, sa valuation v(F) vaut −m/d. La valuation des séries de Puiseux est
donc à valeurs dans Q.

Le théorème de Newton-Puiseux assure que le corps K f rac((t)) est une clôture al-
gébrique du corps des séries de Laurent K((t)) [Sta24]. Cela signifie que pour K une
clôture algébrique de C(x, y) les séries algébriques A(x, y, t) ont un développement ex-
plicite en série de Puiseux dans K f rac((t)). En particulier, pour les séries algébriques
dans CJtK, l’analyse de singularité est une question entièrement résolue (cf [FS09, par.
VII.7]).

Séries différentiellement finies

L’extension naturelle des séries algébriques est l’incorporation d’équations différen-
tielles linéaires. On commence par définir les séries différentiellement finies dans le cas
des fonctions d’une seule variable.

Définition 1.1.22. Soit A(t) ∈ kJtK une série formelle sur un corps k. Alors A(t) est dite
t-D-finie sur k (ou différentiellement finie en la variable t) si A(t) est solution d’une
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équation différentielle linéaire à coefficients dans k[t], c’est-à-dire s’il existe Lt ∈ k[t, ∂t]
non nul tel que Lt(A(t)) = 0. Lorsque la variable est évidente, on parle simplement de
série différentiellement finie.

Cette définition permet de bonnes propriétés de clôture : les séries t-D-finies forment
un anneau, cette classe est stable par intégration, et par composition avec des séries al-
gébriques. En particulier, les séries algébriques sont D-finies. En outre, il y a équivalence
entre le fait que la série soit D-finie et le fait que ses coefficients vérifient une relation de
récurrence linéaire à coefficients polynomiaux, ce qui donne des algorithmes de calcul
efficaces pour les calculer. En particulier, ces algorithmes sont appliqués aux séries al-
gébriques (qui sont D-finies) afin de calculer rapidement leurs coefficients (la méthode
de Newton est surtout utilisée pour déterminer les premiers coefficients, qui donnent
l’initialisation de cette suite récurrente). Voir [Sta24, ch. 6] ou [Bos+17, Partie 3].

Lorsque l’on souhaite étendre cette définition à des séries de plusieurs variables,
une manière de procéder est la suivante, due à [Lip89], qui permet justement à toutes
les propriétés de clôture énoncées plus haut d’être préservées.

Définition 1.1.23. Une série formelle A(x, y, t) ∈ C[x, y]JtK est dite différentiellement finie
(abrégé D-finie) si elle est à la fois t-D-finie, x-D-finie (on la voit comme une série de
(CJy, tK)JxK) et y-D-finie.

Séries différentiellement algébriques

La dernière généralisation considérée est la classe des séries différentiellement algé-
briques, où les équations différentielles présentes ne sont plus forcément linéaires. Tout
comme dans le cas des séries différentiellement finies, on définit d’abord les séries dif-
férentiellement algébriques en une seule variable.

Définition 1.1.24. Une série formelle A(t) ∈ kJtK est dite t-D-algébrique (différentielle-
ment algébrique selon la variable t) lorsqu’elle est solution d’une équation différentielle
polynomiale sur k(t), c’est-à-dire s’il existe un polynôme P non nul à coefficients dans
k tel que

P(t, A(t), ∂t A(t), (∂t)
2A(t), . . . ) = 0.

Cette classe vérifie toutes les propriétés de clôture de la classe des séries différen-
tiellement finies, en plus du fait qu’elle est stable par quotients et compositions. On
définit alors une notion d’algébricité différentielle pour des séries à plusieurs variables
de manière à ce que ces propriétés de clôture restent respectées.

Définition 1.1.25. Une série formelle A(x, y, t) dans CJx, y, tK est dite différentiellement
algébrique (abrégé D-algébrique) si elle est à la fois x-D-algébrique, y-D-algébrique et
t-D-algébrique, c’est-à-dire s’il existe trois polynômes Px, Py et Pt tels que

Px(x, y, t, A(x, y, t), ∂x A(x, y, t), (∂x)
2A(x, y, t), . . . ) = 0,

Py(x, y, t, A(x, y, t), ∂y A(x, y, t), (∂y)
2A(x, y, t), . . . ) = 0,

Pt(x, y, t, A(x, y, t), ∂t A(x, y, t), (∂t)
2A(x, y, t), . . . ) = 0.
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1.2 Marches dans un cône

On présente maintenant l’objet d’étude de la thèse, soit l’énumération de chemins
contraints dans un cône en deux dimensions.

On considère S ⊂ Z2 \ {(0, 0)} un ensemble fini de directions, appelé l’ensemble des
pas (ou modèle). Chacun de ces pas s ∈ S pourra éventuellement être muni d’un poids
complexe ds non nul. On appelle naturellement un ensemble de pas muni de poids
un modèle à poids (weighted model en anglais). Notamment, les nombres ds peuvent être
choisis algébriquement indépendants sur Q, ce qui permet de les traiter comme des

variables. On se donne également un point de départ s0
def
= (i0, j0) ∈ Z2, choisi par

défaut comme étant (0, 0). On se donne enfin C un cône de R2, c’est-à-dire un sous-
ensemble de R2 vérifiant pour (x, y) dans C que λ · (x, y) appartient à C pour tout
λ ≥ 0.

On cherche à dénombrer les chemins utilisant les pas de S , en prenant en compte
leurs poids, partant du point (i0, j0), et qui sont confinés dans C. Cela veut dire que
pour le point de départ s0, et (w1, . . . , wn) ∈ Sn, on veut pour tout k ∈ {0, . . . , n} que le
point s0 + ∑i≤k wi appartienne à C.

On est amené naturellement à vouloir décrire la série génératrice WC(x, y, t) ∈ C[x, 1/x, y, 1/y]JtK
de ces chemins définie par

WC(x, y, t) def
= ∑

w chemin

(
∏
s∈S

dns
s

)
xiyjtn.

Dans la somme, la paire (i, j) désigne le point où termine le chemin w partant du point
s0, l’entier ns désigne le nombre d’occurrence du pas s dans le chemin w, et n est le
nombre total de pas utilisés par w. On abrégera souvent WC(x, y, t) par WC(x, y). On
introduit le polynôme des pas

S(x, y) = ∑
(i,j)∈S

di,jxiyj ∈ C[x, 1/x, y, 1/y].

1.2.1 Marches non-contraintes

On considère d’abord le cas où le cône C est trivial, c’est-à-dire égal à tout l’espace
R2, ce qui revient à ne mettre aucune contrainte sur les chemins. Sans perte de généra-
lité, on fait partir le chemin de (0, 0).

L’absence de contrainte permet la décomposition inductive suivante. Soit le chemin
est trivial, soit il est obtenu en ajoutant un pas s ∈ S à la fin de n’importe quel chemin
existant. L’équation fonctionnelle s’écrit alors

WC(x, y) = 1 + ∑
i,j
([xiyj]S(x, y))xiyjtWC(x, y),

et on a donc
WC(x, y) =

1
1 − tS(x, y)

.
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La série génératrice est donc rationnelle. De fait, on peut assez simplement l’exploi-
ter pour obtenir des informations sur les chemins. Par exemple, il est possible de décrire
la série génératrice des marches qui terminent à un point donné (i, j), qui correspond à

[xiyj]WC(x, y) = ∑
n≥0

(
[xiyj]S(x, y)n

)
tn.

Cette extraction utilise le théorème des résidus, successivement pour obtenir [yj]WC(x, y)
(une série algébrique, car c’est une diagonale d’une série rationnelle, voir par exemple
[BF02]), puis [xi]

(
[yj]WC(x, y)

)
(une série D-finie, car c’est une diagonale d’une série

algébrique, voir [Lip89]).

1.2.2 Marches contraintes dans un demi-plan

On considère le cas où le cône C est un demi-plan, défini par une équation ax +
by ≥ 0 pour des coefficients a et b réels. Cette fois-ci, tous les mots sur l’ensemble des
pas ne produisent pas une marche licite, et le langage de ces mots n’est même plus
automatiquement rationnel. En effet, s’il existe des cas triviaux (par exemple on n’aura
pas grand peine à déterminer la série génératrice des chemins contraints dans x ≥ 0
pour le modèle donné par S(x, y) = x . . .), la série génératrice des chemins de Dyck est
algébrique non rationnelle, donc le langage des mots qui codent un chemin de Dyck (le
langage de Dyck) n’est pas reconnaissable par un automate fini.

Lorsque a et b sont quelconques, il y a peu d’espoir de donner une réponse systé-
matique à cette question. Dans le cas où a/b est rationnel, on peut toujours via un re-
paramétrage rationnel se ramener à l’étude d’un modèle de chemins dans le demi-plan
y ≥ 0. Via l’emploi d’une variable catalytique, on va comme vu en 1.1.4 pouvoir former

une équation fonctionnelle sur la série génératrice H(y) def
= WC(x, y, t). Ici, la contrainte

ne porte que sur les ordonnées, donc l’équation catalytique formée à la manière de la
section précédente est en la variable y. Puisque C[x, 1/x, y]JtK ⊂ C[x, 1/x]Jt, yK, on peut
définir

Hi(x, t) def
= [yi]H(y) ∈ C[x, 1/x]JtK

la série génératrice des chemins terminant à l’altitude i, et

H<i(y)
def
= ∑

i′<i
Hi′(x, t)yi′ ∈ (C[x, 1/x]JtK) [y]

la série génératrice des chemins terminant strictement en dessous de l’altitude i. Cette
dernière série est un polynôme en y, de degré strictement plus petit que i.

On peut alors écrire l’équation fonctionnelle comme suit, en décomposant induc-
tivement les chemins selon le nombre de pas utilisés. Le cas de base correspond au
chemin trivial, de point de départ (i0, j0). Pour le cas inductif, on se demande pour
chaque pas de S dans quelle mesure on peut l’ajouter à un chemin existant. S’il avance
en la coordonnée y, on peut l’ajouter à tout chemin existant. S’il recule de i, on peut
l’ajouter à un chemin dès lors qu’il termine à une ordonnée plus grande que i.
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Exemple 1.2.1. On regarde le cas où S = {(1,−2), (0,−1), (−2, 1)} et où l’on part de 0.

(1,−2) (0,−1) (−2, 1)

FIGURE 1.2.1 – Un pas peut être ajouté à tout chemin dès lors qu’il reste dans le demi-plan

L’équation fonctionnelle s’écrit

H(y) = 1 + tx−2yH(y) + t/y(H(y)− H0(y)) + tx/y2(H(y)− H1(y)− H0(y)).

■

La décomposition inductive décrite précédemment se traduit dans le cas général en
l’équation fonctionnelle

H(y) = xi0 yj0 + ∑
i≥0

tyi([yi]S(x, y))H(y) + ∑
i>0

ty−i([y−i]S(x, y))(H(y)− H<i(y)).

(1.2.1)
En regroupant à gauche les termes en H(y), et regroupant à droite les facteurs en
Hi(x, t), l’équation fonctionnelle se réécrit en

x−i0(1 − tS(x, y))H(y) = yj0 − t
m

∑
i=0

ai(x, y)Hi(x, t),

où −m est la valuation en y de S(x, y) (la taille du plus grand pas qui recule en y), où
les ai(x, y) ∈ C[x, 1/x, 1/y] sont connus, et vérifient degy ai(x, y) < 0 pour tout i.

Théorème 1.2.2. La série génératrice H(y) des chemins partant de (i0, 0) est algébrique.

Démonstration. Comme dans l’exemple traité en Section 1.1.4, on emploie la méthode
du noyau. Le développement suivant est dû à [BP00]. On multiplie l’équation par ym

pour m minimal tel que les coefficients de l’équation sont à coefficients polynomiaux
(−m est la valuation de S(x, y) en y, correspondant donc aux pas de S qui reculent le
plus), et on obtient alors l’équation

x−i0(ym − tymS(x, y))H(y) = ym + t ∑
i

ymai(x, y)Hi(x, t).
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La proposition 6.1.8 de [Sta24] donne que le nombre de racines dans C(x)
f rac

JtK de

l’équation K(x, y) def
= ym − tymS(x, y) = 0 est m. De plus, il est facile de voir que les

racines de ce polynôme sont distinctes, aussi on considère y1(x, t), . . . , ym(x, t) les m
racines distinctes dans K f racJtK, et ym+1(x, t), . . . les autres racines en y de K(x, y, t). En
substituant yi(x, t) à y dans l’équation, on obtient m équations

0 = yi(x, t)m + t ∑
i

yi(x, t)mai(x, yi(x, t))Fi(x).

Puisque degy ai(x, y) < 0, le polynôme unitaire Ym + t ∑i Ymai(x, Y)Fi(x, t) est de de-
gré m en Y, de coefficient dominant Ym. Les yi(x, t) en sont m racines distinctes, par
conséquent il peut se factoriser comme

Ym + t ∑
i

ymai(x, Y)Fi(x, t) = (Y − y1(x, t)) . . . (Y − ym(x, t)).

Ainsi, H(y) est algébrique, et vaut

H(y) =
(y − y1(x)) . . . (y − ym(x))

K(x, y)
.

En particulier, la série Hi(x, t) des chemins allant de (i0, 0) à une altitude l pour l ∈ N

est algébrique, puisque l’expression ci-dessus est rationnelle en y.

Il faut noter que l’argument précédent utilisait de manière cruciale le fait que le
point de départ des chemins considérés était y = 0. Autrement, le membre de droite
aurait eu un degré strictement plus grand que m, et la connaissance de seulement m de
ses racines n’aurait pas suffi pour le factoriser. On peut toutefois réutiliser simplement
le théorème 1.2.2 pour un point de départ général, et sans trop de calculs supplémen-
taires.

Corollaire 1.2.3. La série génératrice H(y) des chemins partant de l’altitude k ≥ 0 est algé-
brique.

Démonstration. Notons Hk→l(t) la série génératrice des chemins dans le demi-plan su-
périeur allant de k à l.

Montrons d’abord par induction sur k ≥ 0 que Hk→0(t) est algébrique. Le cas de
base k = 0 a été traité précédemment. Pour le cas inductif, on utilise le fait qu’un che-
min qui va de k à 0 peut se décomposer comme une suite de chemins demeurant dans
le demi-plan supérieur, séparés par des pas descendants qui chacun réalisent le pre-
mier record à une altitude inférieure (figure 1.2.2). C’est la décomposition par premier
passage à l’altitude inférieure.
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FIGURE 1.2.2 – Décomposition par premier passage inférieur

Aussi, la série génératrice Hk→0(t) s’écrit

Hk→0(t) = ∑
i,j / i−j<0

H0→i(t) · (t([y−j]S(x, y)) · Hi−j→0(t).

Puisque l’ensemble des pas descendants est fini, cette somme est finie, ce qui montre
l’algébricité de Hk→0(t).

Pour le cas général, il suffit alors de décomposer les chemins qui vont de de k à l
par leur altitude minimale r ∈ {0, . . . , k}. Un chemin de k à l d’altitude minimale r se
décompose alors en chemin partant k restant strictement au dessus de r, puis un pas
descendant vers r, puis un chemin restant au dessus de r allant vers l. On écrit ainsi

Hk→l(t) =
k

∑
r=0

∑
j>0

Hk−r−j→0(t) · t([y−j]S(x, y)) · H0→l−r(t).

De même que précédemment, cette somme est finie, ce qui montre l’algébricité de
Hk→l(t) pour tous k, l ≥ 0. On conclut à l’aide de l’équation fonctionnelle (1.2.1) que
H(y) est algébrique, puisqu’elle s’exprime comme une une fraction rationnelle d’un
nombre fini de (Hk→l(t))l .

On obtient alors de même que précédemment que la série des chemins terminant à
une ordonnée j donnée est algébrique sur C(x, t) (c’est l’un des coefficients de H(y)),
et que par suite la série des chemins terminant à une coordonnée (i, j) donnée est D-
finie comme diagonale d’une série algébrique [Lip88]. On note qu’il existe des preuves
alternatives d’algébricité de toutes ces séries solutions d’une équation d’une variable
catalytique, via le théorème 2.2.1.
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1.2.3 Marches contraintes dans le quart de plan

Jusqu’ici, les séries WC(x, y) comptant les chemins sans contraintes sur leur point
d’arrivée sont algébriques. Par extraction, la série des chemins terminant à une coor-
donnée spécifique du plan est au plus D-finie. Cela change lorsque l’on arrive au cas gé-
néral, à savoir lorsque le cône est constitué de deux demi-droites sécantes (figure 1.2.3).
De même que précédemment, on peut lorsque les coordonnées de ces droites sont ra-
tionnelles se ramener via des reparamétrages de l’ensemble des pas à deux situations :
soit le cône est donné par l’équation x ≥ 0 ∨ y ≥ 0 (appelé le trois-quarts de plan), soit
le cône convexe est donné par l’équation x ≥ 0 ∧ y ≥ 0 (appelé le quart de plan). On ne
parlera ici que du deuxième cas, le quart de plan.

FIGURE 1.2.3 – Le quart de plan et le trois-quart de plan

Dans la situation de marches dans le quart de plan, il est aisé de former une équation

fonctionnelle sur la série génératrice Q(x, y) def
= WC(x, y, t), au moyen des variables

catalytiques x et y, qui vont coder les coordonnées où terminent les chemins considérés.
On va décomposer inductivement les chemins, selon le nombre de pas utilisés. Le cas
de base est le chemin trivial partant du point (i0, j0). Pour le cas inductif, on va comme
précédemment considérer chacun des pas de S , et déterminer à quelle condition sur le
pas (i, j) ∈ S on peut l’ajouter à un chemin existant sans quitter le quart de plan.

1. Si le pas vérifie i ≥ 0 et j ≥ 0, on peut l’ajouter à n’importe quel chemin.
2. Si le pas vérifie i ≥ 0 et j < 0, on peut l’ajouter à n’importe quel chemin qui

termine hors du rectangle [0, ∞]× [0,−j[.
3. De même, si le pas vérifie i < 0 et j ≥ 0, on peut l’ajouter à n’importe quel chemin

qui termine hors du rectangle [0,−i[×[0, ∞].
4. Enfin, si le pas vérifie i < 0 et j < 0, on peut l’ajouter aux chemins qui terminent

hors du rectangle [0,−i[×[0,−j[.
Étant donné que Q(x, y) ∈ C[x, y]JtK ⊂ CJx, y, tK, on l’écrit de trois manières diffé-

rentes, pour définir trois familles de séries génératrices :

Q(x, y) = ∑
i,j≥0

Qi,j(t)xiyj = ∑
i≥0

Qi,•(y)xi = ∑
j≥0

Q•,j(x)yi.
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Il faut noter que les séries Qi,j(t), Qi,•(y) et Qj,•(x), que l’on appelle les sections peuvent
s’exprimer comme

Qi,j(t) =
(∂i

x∂
j
yQ(x, y))(0, 0)

i!j!

Qi,•(y) =
(∂i

xQ(x, y))(x = 0)
i!

Q•,j(x) =
(∂

j
yQ(x, y))(y = 0)

j!
.

Il faut également noter qu’elles ne dépendent chacune que d’au plus une variable x et
y. On introduit alors la série génératrice des chemins qui terminent dans un rectangle
[0, i[×[0, j[ pour tous i ∈ N ∪ {∞} et j ∈ N ∪ {∞},

Q<i,<j(x, y) def
= ∑

i′<i,j′<j

(
[xi′yj′ ]Q(x, y)

)
xi′yj′ .

Les séries Q<i,<j(x, y) s’expriment comme des polynômes en x, y, et les séries Qi,j(t),
Qi,•(y) et Q•,j(x).

Exemple 1.2.4. On considère le cas où S = {(−1,−1), (1, 3), (−2, 0)}, le poids du pas
(i, j) vaut di,j et où on part de (3, 4).

(−1,−1) (1, 3) (−2, 0)

FIGURE 1.2.4 – Chaque pas de S peut être ajouté à un chemin existant pourvu que cet ajout ne
quitte pas le quadrant.

Un chemin est soit trivial, soit construit en ajoutant un pas à l’une des marches
terminant dans sa zone verte (figure 1.2.4). L’équation fonctionnelle s’écrit alors

Q(x, y) = x3y4 + td1,3xy3Q(x, y) + td−2,0/x2(Q(x, y)− Q0,•(y)− xQ1,•(y))
+ td−1,−1/(xy)(Q(x, y)− Q0,•(y)− Q•,0(y) + Q0,0(y)).

■
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L’équation fonctionnelle s’écrit de manière générale comme

Q(x, y) = xi0 yj0

+ ∑
i≥0,j≥0

txiyj
(
[xiyj]S(x, y)

)
Q(x, y)

+ ∑
i≥0,j>0

txiy−j
(
[xiy−j]S(x, y)

) (
Q(x, y)− Q<∞,<j(x, y)

)
+ ∑

i>0,j≥0
tx−iyj

(
[x−iyj]S(x, y)

)
(Q(x, y)− Q<i,<∞(x, y))

+ ∑
i>0,j>0

tx−iy−j
(
[x−iy−j]S(x, y)

) (
Q(x, y)− Q<i,<j(x, y)

)
.

En mettant à gauche tous les termes en Q(x, y), et en exprimant les fonctions Q<i,<j(x, y)
comme des polynômes en les sections, on obtient une équation sous forme compacte :

K(x, y)Q(x, y) = xi0 yj0 + t ∑
(i,j)∈S

ai,j(x, y)Fi,j(x, y) (1.2.2)

où les ai,j(x, y) sont des polynômes de Laurent connus, les fonctions Fi,j(x, y) sont des
sections, et K(x, y) = 1− tS(x, y) est le noyau ‡. On est toujours en présence d’une équa-
tions aux variables catalytiques à noyau, soit une équation qui relie linéairement Q(x, y)
avec des fonctions inconnues ne faisant intervenir qu’une seule des deux variables.

À la différence des situations précédentes, l’équation précédente admet des cas dits
« non-dégénérés » où la méthode du noyau unidimensionnel est inopérante. Un cas
particulier notable intervient lorsque l’on se restreint aux petits pas, c’est-à-dire lorsque
S ⊂ {−1, 0, 1}2. L’équation s’écrit alors de la manière suivante :

xyK(x, y)Q(x, y) = xy − ty([x−1]S(x, y))Q(0, y)− tx([y−1]S(x, y))Q(x, 0)

+ t([x−1y−1]S(x, y))Q(0, 0).
(1.2.3)

Quand l’ensemble de pas S contient des pas qui reculent dans les deux directions (i.e.
[x−1]S(x, y) ̸= 0 et [y−1]S(x, y) ̸= 0), on observe que l’équation (1.2.3) fait intervenir
à la fois Q(0, y) et Q(x, 0), aussi les deux variables catalytiques sont a priori néces-
saires. Ces modèles de pas ont été l’objet d’une classification systématique. Cette pre-
mière classification des chemins discrets dans le quadrant qui s’étend grosso modo de
2010 (article [BM10]) à 2018 (fin de la classification des modèles hypertranscendants,
avec [DHRS18 ; DHRS21]) a interconnecté de très nombreux mathématiciens de disci-
plines très diverses, de combinatoire énumérative [BM10 ; Bou16], probabilités [FIM99 ;
DW15 ; KR12], calcul formel [BK10 ; BCvKP17] et théorie de Galois des équations aux
différences [DHRS21 ; DHRS18].

‡. La forme explicite du membre de droite dans le cas général n’apporte que peu d’intuition sur le
chemin, aussi on s’est contenté ici de donner la forme grossière de l’équation. Elle est de toute manière
suffisamment simple à retrouver à la main dans des cas particuliers.
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Groupe fini ?

Découplage de xy ?

Algébriques : 4 D-finis : 19 D-algébriques : 9 Non D-algébriques : 47

Découplage de xy ?

oui

oui

oui

non

non non

FIGURE 1.2.5 – Classification des 79 modèles à petits pas fondamentaux. La signification des
conditions groupe fini et découplage de xy sera expliquée au chapitre suivant.

Depuis l’aboutissement de cette première classification, la progression naturelle consiste
à étudier d’autres types de chemins via ces équations catalytiques, en adaptant les ou-
tils qui ont été développés dans le cadre de cette classification. C’est dans ce contexte
très riche que se situe cette thèse.

1.3 Organisation du manuscrit

Le manuscrit de thèse présente deux travaux autour du dénombrement des marches
dans le quadrant, issus en grande partie d’articles rédigés durant les trois ans de thèse.
Aussi, le contenu de ces articles en anglais sera en grande partie reproduit, faisant ainsi
l’économie d’un travail de traduction. Par suite, le vocabulaire des chemins dans le
quadrant qui y est employé sera également introduit dans cette langue dans le chapitre
suivant.

Les outils intervenant dans l’énumération des chemins dans le quadrant sont en-
core jeunes, et constamment redéfinis. Ce chaos se condensera peut-être dans quelques
années avec une théorie générale permettant de tout compter. L’auteur n’a pas la pré-
tention de fournir une telle théorie, aussi la présentation qui sera faite des différents
outils fera apparaître des redondances. Chaque présentation d’une notion sera ratta-
chée au texte dont elle est issue.

1.3.1 Chemins à petits pas dans le quart de plan

Le chapitre 2 rappelle les notions fondamentales utilisées lors de l’étude des che-
mins à petits pas dans le quart de plan. Notamment, il présente deux approches qui ne
sont pas tout à fait équivalentes pour étudier l’équation fonctionnelle (1.2.3). La pre-
mière approche présentée est « géométrique », et est due à [FIM99]. La seconde ap-
proche présentée, et qui s’en inspire, est « formelle », et est due à [BM10]. Ces deux ap-
proches, qui ont en commun de définir un certain groupe de transformations de l’équa-
tion, sont appliquées dans des cas différents. On fera usage plus loin dans la thèse de
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ces deux approches, et en profite pour introduire les notions nécessaires de théorie des
corps.

1.3.2 Marches à grands pas

Mon premier travail a été de rendre possible l’application d’une stratégie d’algé-
bricité pour les marches à grands pas (qui existait pour les petits pas, voir la sec-
tion 2.2.2). En particulier, cette stratégie d’algébricité requerrait l’étude et la construc-
tion d’invariants rationnels et de découplage de fractions rationnelles.

L’objet d’un premier article avec Charlotte Hardouin a été d’étudier sous un prisme
galoisien un graphe de changements de variables, appelé l’orbite et introduit dans [BBM21].
On montre d’abord au chapitre 3 qu’un certain groupe d’automorphismes finiment en-
gendré agit transitivement et fidèlement sur l’orbite. Cela permet d’étudier plus fine-
ment ses symétries, et donne alors, lorsque cette orbite est finie, des moyens systéma-
tiques de construire des invariants rationnels. En outre, au chapitre 4, le formalisme de
l’homologie des graphes et son interaction avec ledit groupe permettent de construire
une obstruction au découplage de fractions rationnelles. Munis de ces deux outils, on
construit explicitement des découplages et invariants pour diverses familles de che-
mins au chapitre 5. On prouve alors d’une part en section 5.2 des conjectures d’algébri-
cité énoncées dans [BBM21], et on trouve d’autre part en section 5.3 une famille infinie
de modèles à pas arbitrairement grands potentiellement algébriques.

1.3.3 Marches à bords interactifs

Mon second travail au chapitre 6 a consisté à étudier des chemins à petits pas
dans le quart de plan, mais en considérant la statistique supplémentaire du nombre
de contacts avec les deux axes, qualifiés de chemins à bords interactifs. En se concentrant
sur une certaine famille de pas (dits de genre zéro, voir le chapitre idoine), on a pu appli-
quer les techniques de traitement des équations fonctionnelles pour ces modèles issues
de [DHRS20]. On donne alors la classification complète de ces modèles, selon les poids
a et b associés aux interactions avec les axes. En étudiant de manière effective les cri-
tères pour les solutions de ces équations, on découvre certaines relations inattendues
entre les poids pour lesquelles la série génératrice est algébrique, tout en démontrant
que dans tous les autres cas celle-ci n’est pas différentiellement algébrique.
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Chapter 2

Small steps

In this chapter, we recall some known facts on the enumeration of quadrant walks
with small steps, which will be reused or adapted in the remaining of the manuscript.
We will in particular use this presentation to illustrate the mathematical notions re-
quired for understanding the manuscript.

The chapter is articulated around a fundamental object attached to a model with
small steps, called the group of the walk. In the study of walks with small steps, this
group was defined and used in two slightly different ways. Recall that as explained in
Section 1.2.3, given a weighted model of walks with small steps, the functional equation
for the generating function Q(x, y) of walks in the quadrant starting at (0, 0) is

K̃(x, y)Q(x, y) = xy − ty([x−1]S(x, y))Q(0, y)

− tx([y−1]S(x, y))Q(x, 0)

+ t([x−1y−1]S(x, y))Q(0, 0)

(2.0.1)

with K̃(x, y) = xy(1 − tS(x, y)). The goal is to obtain information on the series Q(x, y)
by exploiting the structure of the above functional equation. One possible way would
be to extend the kernel method that was seen in Section 1.2.2. Two difficulties arise.

First, contrasting with the kernel method, the zero locus of K̃(x, y) is an algebraic
curve, making necessary the analysis of the valuations in t of x(y, t), for x(y, t) a partic-
ular branch of the equation K̃(x(y, t), y) = 0. Hence, it is not obvious how one would
make the evaluation of the equation on all points of the curve K̃(x, y) = 0 well defined.

Moreover, assuming that such an evaluation is well defined, the left-hand side of
the equation would vanish, leaving the following equation

0 = x(y, t)y − ty([x−1]S(x, y))Q(0, y)

− tx(y, t)([y−1]S(x(y, t), y))Q(x(y, t), 0)

+ t([x−1y−1]S(x, y))Q(0, 0).

Note that this equation has still three unknown functions. In all the cases, a group of
transformations of the equation, the group of the walk, will be introduced to help isolate
these functions.
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The two approaches listed below both answer these two questions in different ways,
to eventually solve the equation (2.0.1). The choice of the technique to use is highly
dependent on the studied model.

In Section 2.1, we present a first approach, originated in [FIM99] and geometric
in nature. For a fixed t, it sees the zero locus of K̃(x, y) = 0 as a complex projective
curve Et admitting some nice parametrization P ∈ C 7→ (x(P), y(P)) ∈ Et, so that
the convergence of all the functions in the equation is ensured when replacing (x, y)
by (x(P), y(P)) for some of the points P. It then presents the group evoked earlier as
a group of automorphisms of C which encodes the symmetries of the equation. This
group induces a difference operator on the meromorphic functions on the kernel curve,
which permits to see one of the unknown functions as the solution to some difference
equation relative to this operator. This equation can be handled through Galois theory,
or differential Galois theory of difference equations, depending on the finiteness of the
group.

In Section 2.2 we show another approach and definition of the group, introduced
in [BM10], which was adapted from the earlier geometric definition. Here, the kernel
polynomial does not vanish. Instead, the group is more directly seen as a group of
rational transformations of the indeterminates x and y, so that the polynomial S(x, y)
is constant on these substitutions. The group is then directly applied to the functional
equation (1.2.3). This approach, more “formal” in nature, was the one that first ad-
mitted a direct extension to walks with large steps, for it does not require to describe
the structure of the zero locus of K̃(x, y) (the geometric approach might extend for
large steps [FR15]). Among the contributions of this approach are orbit sums, that al-
low for a simplification of the functional equation, and give algebraicity and some
D-finiteness proofs. As an example, we present an adaptation of the so-called Tutte
invariant method [Tut95].

2.1 Geometric approach

The first systematic approach to walks in the quadrant was developped in the book
by Fayolle, Iasnogorodski and Malyshev [FIM99], from a probabilistic point of view.
In their context, the functional equations do not concern the generating function of
walks, but rather the generating function of the stationary distribution of a random
walk. Nevertheless, their techniques are general enough so that they were applied in
the enumerative combinatorics context of the counting of walks in the quadrant, as
presented below.

2.1.1 Kernel curve

So as to remove the only unknown of the equation depending on both variables x
and y (the function Q(x, y)), and following the kernel method described earlier, it is
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natural to make vanish the kernel polynomial

K̃(x, y) def
= xy (1 − tS(x, y)) ∈ C[x, y, t].

For every complex number t, the kernel polynomial K̃(x, y) defines a complex affine
curve in C2

Et
def
= {(x, y) ∈ C × C : K̃(x, y) = 0}.

One considers the projective closure of this curve in P1 × P1 *, which we define now.
Here, P1 = P1(C) denotes the complex projective line, which may be defined as the
quotient of C × C by the equivalence relation

(x0, x1) ∼ (x′0, x′1) ⇐⇒ ∃λ ∈ C⋆, (λx0, λx1) = (x′0, x′1).

One denotes by [x0 : x1] the class of (x0, x1). The affine line C embeds into P1 through

the map x 7→ [x : 1], and we thus denote ∞ def
= [1 : 0] (the projective line P1 can be

thought of as the complex plane with an additional point at ∞). The projective closure
of Et in P1 × P1 is then

Et
def
=
{
([x0 : x1], [y0 : y1]) ∈ P1 × P1 : x2

1y2
1K̃( x0

x1
, y0

y1
) = 0

}
.

In [DHRS21], the authors examine study the geometric properties of the curve Et
for weighted models with small steps. We summarize it in the following proposition.
A weighted model is called nondegenerate when t the model S has at least one step
in each direction, so that [x−1]S(x, y), [y−1]S(x, y), [x1]S(x, y) and [y1]S(x, y) are all
nonzero.

Proposition 2.1.1. When the weighted model described by S(x, y) is nondegenerate, then the
kernel polynomial K̃(x, y) is irreducible for all t > 0 as an element of C[x, y]. Hence, the curve
Et is irreducible, and admits a birational parametrization ϕ : C → Et. Two cases happen.

1. Either C = P1, this case called the genus 0 case. Indeed, the genus of P1 is 0 (informally,
it has no hole).

2. Either there exist two non-colinear complex numbers ω1 and ω2 such that C = C/Λ
with Λ = ω1Z + ω2Z, this case this time called the genus 1 case. Indeed, the surface
C/Λ has genus 1 (informally, it has one hole).

For uniformity in the treatment, we for now forget about the specifics of C. We
simply say that it is an irreducible smooth projective curve, along with a birational
map ϕ : C → Et. Moreover, since the curve Et is a subset of P1 × P1, we may compose
ϕ with the two projections of P1 × P1 onto its first and second factor, and we end up
with two rational maps x : C → P1 and y : C → P1. Thus, in the remaining of the text,
we will denote a point of the curve Et by a tuple (x(P), y(P)), with P a point of C.

*. We consider the projective closure, for this curve has better geometric and topological properties (in
particular, Et is a compact Riemann surface).
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2.1.2 Function field and Galois theory

In algebraic geometry, any complex irreducible projective curve X is endowed with
what is called its function field denoted K(X). It corresponds to the field of all ratio-
nal maps X → P1. The precise definition of rational maps, and a nice introduction to
classical algebraic geometry may be found in Chapter 1 of [Har77], or in Appendix B
of [Sti09] for the projective case. In the case of the curve C (with K̃(x, y) irreducible),
with x : C → P1 and y : C → P1 being the projection maps defined earlier, the function
field of C is

K(C) = C(x, y),

the rational maps x and y satisfying the relation K̃(x, y) = 0.
Any automorphism of the complex curve C will induce a C-algebra automorphism

of its function field K(C), et vice-versa [Sti09, Appendix B]. For instance, for the first
direction, if τ : C → C is an automorphism, then τ induces a C-algebra automorphism
τ̃ of K(C) given by

τ̃( f )(P) def
= f (τP) for every rational map f : C → P1.

Conversely, if σ is a C-algebra automorphism of K(C), it is possible to find a corre-
sponding automorphism τ of C satisfying τ̃ = σ. When τ is an automorphism of C and
f : C → P1 a rational map (equivalently an element of K(C)), then we will write

f τ def
= τ̃( f ).

The reason for the exponential notation is because the action of automorphisms of C on
the field K(C) is a right action, meaning that

f (τ1τ2) = ( f τ1)τ2 .

Arithmetic of the function field of the curve

We now give additional terminology on function fields. We first recall some termi-
nology and basic results on fields.

Definition 2.1.2 (Chapter I of [Sza09]). Let k, L, M be fields.

1. Consider a ring homomorphism ι : k → L. Then ι is injective. Thus, k embeds in L.
We then identify k with the image of its embedding in L through this morphism,
and we write it k ⊂ L (thus forgetting the structure embedding). We then say that L
is an extension of k, and write it L/k.

2. For M/k and L/k two extensions, a ring homomorphism σ : M → L is a k-algebra
homomorphism if σ(x) = x for all x ∈ k (i.e. σ fixes k). For two extensions L and M
of k, we denote by Homk(M, L) the set of k-algebra homomorphisms from M to
L. We also denote by Autk(L) the group of k-algebra automorphisms of L.
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3. The degree of an extension L/k is the dimension of L as a k-vector space, and is
denoted [L : k]. When the degree is finite, the extension L/k is called finite. If
M/L and L/k are extensions, then M/k is an extension, and one has [M : k] =
[M : L] · [L : k].

4. Let L/k be an extension. An element x ∈ L is algebraic (over k) if the extension
k(x)/k is finite. If all the elements of L are algebraic, then the extension L/k is
called algebraic.

We often consider some base field k. For this base field, we may find some large
algebraic extension containing all the roots of polynomials in k[Z]: the algebraic closure
of k.

Proposition 2.1.3 (Chapter I of [Sza09]). Let k be a field.

1. A field is algebraically closed if it has no other algebraic extension than itself. An
algebraic closure of k is an algebraically closed field k such that the extension k/k is
algebraic.

2. There exists an algebraic closure k of k. It is unique up to a k-algebra isomorphism.

3. For an algebraic extension L/k, there exists a k-algebra homomorphism σ : L → k.

4. If an extension L/k is algebraic, any k-algebra homomorphism σ : L → k extends to a
k-algebra isomorphism σ̃ : L → k. As a consequence, k ≃ L, and k is an algebraic closure
of L.

5. For L/k an algebraic extension, the restriction homomorphism

Homk(k, k) −→ Homk(L, k)
σ 7−→ σ|L

is a surjection, with kernel HomL(k, k).

We now recall basic facts on divisors of a function field of an algebraic curve. A
comprehensive introduction to these notions is contained in [Sti09].

Definition/Proposition 2.1.4 (Chapter I of [Sti09]). Consider the curve C, with function
field K(C). A zero of a fonction h ∈ K(C) is a point P of C such that h(P) = 0. A
divisor on C is a formal finite sum of points of C, that is D = ∑P∈C nP · P where the nP
are integers. The degree of a divisor D = ∑P nPP of C is defined as deg D = ∑P nP.
The map D 7→ deg D is a group homomorphism from the group of divisors to Z. The
following properties hold:

1. Let h be a nonzero function in K(C). The function h has finitely many zeros in C.
The zero divisor of h is thus defined as

(h)0 = ∑
P zero of h

ordP(h) · P

where ordP(h) is the multiplicity of P as a zero of h. Similarly, the polar divisor
(h)∞ of h is defined as the zero divisor of h−1.
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2. The principal divisor associated to a nonzero function h is defined as

(h) = (h)0 − (h)∞.

It has the property that (h) = 0 if and only if h is belongs to k ∩ K(C) (h is a
constant).

3. For u, v two nonzero functions in K(C), then (1/u) = −(u) and (uv) = (u) + (v).

4. For h ∈ K(C) not a constant, the following holds:

deg(h)0 = deg(h)∞ = [K(C) : C(h)].

Moreover, 1 ≤ [K(C) : C(h)] < ∞ (recall that for L/k an extension, [L : k] denotes
the dimension of L as a k-vector space).

Example 2.1.5. Consider the complex curve P1 and the rational map s : P1 → P1

defined by s(P) = P for all P in P1. Then the function field of P1 is K(P1) = C(s), the
field of complex fractions in one variable.

Let f (s) ∈ C(s) be a rational map. Then f (s) = u(s)
v(s) for some relatively prime

polynomials u(Z), v(Z) in C[Z]. If P ∈ C is a zero of f (s), then u(P) = 0. Indeed, since
u and v are relatively prime, Bézout identity yields that a(Z)u(Z) + b(Z)v(Z) = 1 for
some a(Z), b(Z) in C[Z], so replacing Z with s(P) in the above equation shows that
u(s(P)) and v(s(P)) cannot both be zero. Since C is algebraically closed, the sum of
the multiplicities of the zeros of u(s) in C is equal to degZ u(Z). The point P = ∞ is a
zero of f (s) if degZ u(Z) < degZ v(Z), and then its multiplicity is equal to degZ v(Z)−
degZ u(Z). Thus, the degree of the zero divisor of f (s) is

deg ( f )0 = max{degZ u(Z), degZ v(Z)}

We now compute the degree of the extension C(s)/C( f (s)). The function s is a root
of the polynomial

µ(Z) := u(Z)− h(s)v(Z) ∈ C[h(s), Z].

Since h(s) ̸= 0, this polynomial has degree max{degZ u(Z), degZ v(Z)}. Moreover,
it is irreducible. Since h(s) is transcendental over C, we may see µ(Z) as an element
of the polynomial ring C[h(s), Z]. Since µ(Z) has degree 1 in h(s), it is irreducible
in C(Z)[h(s)]. Moreover, if µ(Z) = a(Z)µ̃(Z, h(s)), for some nonconstant a ∈ C[Z],
then one of the roots z0 of µ(Z) belongs to C. Then u(z0) = h(s)v(z0). If v(z0) = 0,
then u(z0) = 0, which is impossible since u(Z) and v(Z) have no common roots. If
v(z0) ̸= 0, this implies that h(s) belongs to C, which is impossible. Therefore, µ(Z)
has content 1, so Gauss Lemma [Lan02, Chapter IV, theorem 2.3] implies that µ(Z) is
irreducible in C[h(s), Z]. In particular, µ(Z) is irreducible in C(h(s))[Z]. This shows
that [C(s) : C( f (s))] = deg( f )0, and by the same argument that [C(s) : C( f (s))] =
deg( f )∞. ■
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Galois theory

We recall here basic notions of Galois theory. We consider a base field k of charac-
teristic 0 for the sake of simplicity (meaning that Q embeds into k). In particular, the
following definitions are not given in the most general setting to ease understanding.
All the definitions and propositions found in this section can be found in Chapter I of
[Sza09].

Definition/Proposition 2.1.6 (Galois extension). For L/k an algebraic extension, we de-
note Autk(L) the group of k-algebra automorphisms of L. For H a subgroup of Autk(k),
denote LH ⊂ L the subfield of elements fixed by H, i.e.

LH def
= {x ∈ L : ∀σ ∈ H, σ(x) = x}.

Note that we have always k ⊂ LAutk(L). When k = LAutk(L), then the extension L/k is
called Galois (the elements of k are exactly those fixed by Autk(L)). The group Autk(L)
is then called the Galois group of the extension, and is often denoted Gal(L/k).

There is an easy criterion to determine when an extension L/k is Galois. Recall from
Proposition 2.1.3 that if L/k is algebraic, then k is an algebraic closure of L.

Proposition 2.1.7 (Chapter I [Sza09]). Let L/k be an algebraic extension. It is called normal
if for any k-algebra homomorphism σ ∈ Autk(k), then σ(L) ⊂ L. If k has characteristic zero,
then L/k is normal if and only if it is Galois.

Example 2.1.8. When k has characteristic 0, then the extension k/k is Galois. Its Galois
group Gk is called the absolute Galois group of k. ■

Example 2.1.9. Assume that L/k has degree 2. Then L/k is Galois. Indeed, it is straight-
forward to see that there exists x in L with L = k(x), having minimal polynomial
P(X) = X2 − a for a in k and a not a square (consider any element α in L \ k, we may
take x to be the discriminant of the minimal polynomial of α over k). The polynomial
P(X) factors in L as (X − x)(X + x). Therefore, if σ is a k-algebra automorphism of
k, then P(σx) = 0, therefore σx = ±x. It follows that L/k is normal, hence Galois.
Its Galois group has order 2, generated by the k-algebra homomorphism ι1 induced by
x 7→ −x. ■

Theorem 2.1.10 (Fundamental theorem of finite Galois theory). Let M/k be a Galois ex-
tension, and let G = Gal(M/k) its Galois group. Then there is an anti-equivalence of cate-
gories (called the Galois correspondence) between the intermediate extensions of L/k and the
subgroups G ordered by inclusion, given by the following two maps:

1. Let L/k be an intermediate extension of M/k. Then the extension M/L is Galois. We

may thus consider its Galois group H def
= Gal(M/L), which is a subgroup of G.

2. Let H be a subgroup of G, then we consider the following subfield of M: L def
= MH = { f ∈

M : for all τ ∈ H, τ( f ) = f }, which contains k, so L/k is an intermediate extension of
M/k.
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Moreover, [M : k] = #G.

Lemma 2.1.11. Let L/k be a Galois extension and µ ∈ k[Z] an irreducible polynomial with
some root α in L. Then µ(Z) splits in L with distinct roots (µ(Z) = (X − x1) . . . (X − xk)
with xi in L), and the group Gal(L/k) acts transitively on its roots.

Example 2.1.12. Consider x1, x2, . . . , xn to be n indeterminates over the rational num-
bers Q. Consider the polynomial

P(X)
def
= (X − x1)(X − x2) . . . (X − xn)

= Xn − en−1Xn−1 + · · ·+ (−1)ne0.

One has [Xi]P(X) = (−1)n−iei for i < n, with ei the i-th elementary symmetric func-

tions on the variables xi. Then the extension L/k def
= Q(x1, . . . , xn)/Q(e0, . . . , en−1) is

algebraic. Moreover, it is immediately seen to be normal, hence Galois. We denote its

Galois group G def
= Gal(L/k). Given a permutation σ ∈ Sn, with Sn the symmetric

group on n elements, one can define a Q-algebra automorphism as follows

f (x1, . . . , xn) ∈ Q(x1, . . . , xn) 7→ f σ(x1, . . . , xn)
def
= f (xσ(1), . . . , xσ(n)).

Since the ei are symmetric functions, this map is a k-algebra automorphism. Thus, the
group Sn embeds in G. Conversely, any element of G induces a permutation on the
roots xi of P(X), thus this embedding is a group isomorphism.

Now, let f (x1, . . . , xn) ∈ L be a function satisfying f σ = f for all σ ∈ Sn. Then
by Theorem 2.1.10, f must belong to k = Q(en−1, . . . , e0). Thus, Galois theory is a
generalization of the theory of symmetric functions. ■

This presentation of Galois theory is far from from the original ideas of Galois, and
took almost a century to be given this exposition which is due to Artin. The interested
reader may look at [Kie71] for a historical perspective. Such presentation is equally
distant to the modern functorial presentation of Grothendieck [Sza09].

2.1.3 Group of the walk

It has been established in [FIM99] that the curve C given by Proposition 2.1.1 is
equipped with two involutive automorphisms ι1 and ι2. They are defined so that for all
P ∈ C one has

x(ι1P) = x(P) and y(ι2P) = y(P). (2.1.1)

We look for such automorphisms for the following (informal) reason. Assume for a
moment that for fixed t > 0, the series Q(x(P), y(P)), Q(x(P), 0) and Q(0, y(P)) con-
verge for P in U ⊂ C an (analytic) open subset of C. Then by substituting (x(P), y(P))
for (x, y) in the equation (1.2.3), we are lead to consider an equation

0 = x(P)y(P) + A(x(P)) + B(y(P)), (2.1.2)
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with

A(x) = −tx([y−1]S(x, y))Q(x, 0) + t([x−1y−1]S(x, y))Q(0, 0)

B(y) = −ty([x−1]S(x, y))Q(0, y)

Now, if we assume that U is stable under ι1, then we can through the same argument
obtain an equation

0 = x(P)y(ι1P) + A(x(P)) + B(y(ι1P)), (2.1.3)

since x(ι1P) = x(P). We can then eliminate A(x(P)) between (2.1.2) and (2.1.3), to
obtain

0 = x(P)(y(P)− y(ι1P)) + B(y(P))− B(y(ι1P)). (2.1.4)

Note that the unknown function A(x) disappeared, so we are left with a nontrivial
equation on the series B(y). This process justifies that we change one variable at a time,
hence the requirements of (2.1.1).

This being said, let us see how are defined ι1 and ι2. Recall that K(C) = C(x, y) with
x : C → P1 and y : C → P1 the projection maps.

Proposition 2.1.13. 1. The extension K(C)/C(x) has degree 2. Thus, it is Galois, with
Galois group generated by an involution ι1.

2. Similarly, the extension K(C)/C(y) has degree 2. Thus, it is Galois, with Galois group
generated by an involution ι2.

The following lattice serves as a summary.

K(C) = C(x, y)

C(x) C(y)

ι1 ι2

Proof. In virtue of the fact that the set of steps S has at least one step in each direction,
the polynomial K̃(X, Y) satisfies degX K̃(X, Y) = degY K̃(X, Y) = 2. Since it is irre-
ducible in both variables, and that K̃(x, y) = 0, one has [K(C) : C(x)] = [K(C) : C(y)] =
2. It thus follows that these extensions are Galois (see Example 2.1.9), which serves to
define ι1 and ι2.

In virtue of the correspondence between automorphisms of the function field, the
maps ι1 and ι2 induce automorphisms of the curve C, which satisfy (2.1.1). In particular,
the two following equations hold:

y(ι1(P)) =
([y−1]S(x, y))(x(P))

y(P)([y]S(x, y))(x(P))

x(ι2(P)) =
([x−1]S(x, y))(y(P))

x(P)([x]S(x, y))(y(P))
.

(2.1.5)
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The group of the walk G is then defined as the group of automorphisms of C generated
by ι1 and ι2. These two involutions induce an automorphism σ of C defined as

σ
def
= ι2 ◦ ι1. (2.1.6)

Depending on the order of σ, two situations happen.

1. If σ has finite order n, then the group of the walk admits the following presenta-
tion: 〈

a, b | an = 1, b2 = 1, ba = a−1b
〉

,

(r corresponding to σ and t to ι1). Thus, the group is isomorphic to the dihedral
group of order 2n.

2. In the case where σ has infinite order, then the group of the walk is infinite, ad-
mitting the following presentation:〈

a, b | b2 = 1, ba = a−1b
〉

.

We finish with one example that uses the above terminology.

Example 2.1.14. Consider kinv
def
= C(x) ∩ C(y), K = K(C), and σ

def
= ι2ι1. If the group

G = ⟨ι1, ι2⟩ is finite (equivalently σn = 1 for some n > 0), then consider the polynomial

P(Z) =
n−1

∏
k=0

(Z − σkx) ·
n−1

∏
k=0

(Z − ι1σkx).

This polynomial is nonconstant, and by construction its coefficients are fixed by G. In
particular, they are fixed by ι1 and ι2, generators of the Galois groups of k(C)/C(x)
and k(C)/C(y). Therefore, since these extensions are Galois, the coefficients of P(Z)
lie in kinv, hence the extension C(x)/kinv is algebraic since x is a root of P. Since the
transcendence degree of C(x)/C is equal to 1, the field kinv is not equal to C, hence
there exists a nonconstant function f (x) = g(y) ∈ C(x) ∩ C(y).

Conversely, if such an f (x) = g(y) exists, then C(x)/C( f (x)) and C(y)/C(g(y))
are finite. Since f (x) = g(y) is fixed by G, then so are conjugates of x and y. Therefore,
the set {(τx, τy) : τ ∈ G} is finite, so is G since the functions x and y generate k(C).

Thus, if G is infinite, the solutions to hσ = h are h ∈ C. ■

2.1.4 Working on the equation

Let us finish this section by giving some perspective on how to apply this group to
the study of the functional equation (1.2.3) for walks with small steps. We assume here
that the group G is infinite.

Recall that the algebraic curve C can be seen as a compact Riemann surface. De-
pending on the genus of C, it is either the Riemann sphere P1 (genus 0), or a torus C/Λ
(genus 1), with Λ = ω1Z + ω2Z for some non colinear complex numbers ωi. It can be
shown that the group has the following expression on the points of C (see [DHRS21]):

39



2. Small steps

— In the genus 0 case where C = P1, there exists a complex number q with |q| ̸= 1
such that for all s ∈ P1 one has

ι1(s) =
1
s

ι2(s) =
q
s

.

— In the genus 1 case where C = C/Λ, there exists a complex number ω3 ∈ C∗ such
that

ι1(s) = −s ι2(s) = ω3 − s.

Using these explicit expressions, it is easy to prove that in both cases there exists
some affine open set U ⊂ C such that 0 ∈ U ∩ σU. Moreover, the open set satisfies
that for W ∈ {U, ι2U, σU}, and s ∈ W, the power series Q(x(s), y(s)), Q(x(s), 0) and
Q(0, y(s)) are convergent for all |t| < 1. The hereby defined functions of s are then
analytic on W.

Thus, in the functional equation

K̃(x, y)Q(x, y) = xy − tya(y)Q(0, y)
− txb(x)Q(x, 0)
+ tεQ(0, 0),

where

a(y) def
= [x−1]S(x, y) b(x) def

= [y−1]S(x, y)and ε
def
= [x−1y−1]S(x, y),

one may replace (x, y) by (x(s), y(s)) for s ∈ U, thus allowing us to obtain

0 = x(s)y(s)− ty(s)a(y(s))Q(0, y(s))
− tx(s)b(x(s))Q(x(s), 0)
+ tεQ(0, 0).

(2.1.7)

One may also replace (x, y) by (x(ι2s), y(ι2s)) = (xι2(s), yι2(s)) for s ∈ U, thus allowing
us to obtain

0 = xι2(s)y(s)− ty(s)a(y(s))Q(0, y(s))
− txι2(s)b(xι2(s))Q(xι2(s), 0)
+ tεQ(0, 0),

(2.1.8)

(since yι2(s) = y(s) for all s in C). We can thus eliminate Q(0, y(s)) between (2.1.7)
and (2.1.8), to find an equation valid for all s in U

txι2(s)b(xι2(s))Q(xι2(s), 0) = tx(s)b(x(s))Q(x(s), 0) + (xι2(s)− x(s))y(s). (2.1.9)

We then define V def
= U ∩ σU, and an analytic function

qF(s) def
= x(s)b(x(s))Q(x(s), 0)
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for all s in V. Since

xι2(s) = (xι1)ι2(s) = xσ−1
(s) = x(σ−1(s))

and that σ−1(s) ∈ U for s ∈ V, one gets from (2.1.9) the following equation, valid for
all s ∈ V:

qF(σ−1(s)) = qF(s) + (xι2(s)− x(s))y(s). (2.1.10)

This relation is then used to find a meromorphic continuation of qF on C, denoted F̃.
This step is straightforward in genus 0 (see [DHRS20] or Section 6.1.3) and trickier in
genus 1 [KR12]. The equation (2.1.10), called a difference equation can then be handled
through a Galois theory of difference equations [Ish98; HS08; DR19]. In the classi-
fication of walks with small steps, this theory is used for distinguishing between D-
algebraic and non-D-algebraic models.

2.2 Formal approach

In 2010, Bousquet-Mélou and Mishna reopened the systematic investigation of walks
in the quadrant [BM10]. Inspired by the geometric definition of the group of the walk,
they designed a formal definition, only acting on pairs (x, y) with x and y the alge-
braically independent variables of the functional equation. Thus, their group directly
acts on the coefficients in t of formal power series in C(x, y)JtK, allowing to perform sim-
plification on the functional equation without requiring convergence. Their approach
gives paths for proofs of algebraicity and D-finiteness, through the notion of orbit sums.

2.2.1 A formal group of the walk

Rather than canceling the kernel K̃(x, y) = xy(1− tS(x, y)), one rather wants to find
substitutions on the pair (x, y) so that S(x, y) remains constant. Considering (2.1.5), one
defines two maps Ψ and Φ playing the same role as ι1 and ι2, but acting directly on
pairs of algebraically independent variables. Consider two elements u, v belonging to

the field K
def
= C(x, y). Then one defines maps Ψ and Φ as follows. We require that

S(u, v) = S(Ψ(u, v)) and S(u, v) = S(Φ(u, v)), and that when applying Φ or Ψ, at most
one coordinate changes, so that for all (u, v) ∈ K × K one has

Ψ(u, v) = (u, v′) for some v′ Φ(u, v) = (u′, v) for some u′.

Since degx K̃(x, y) = degy K̃(x, y) = 2, this forces to define these maps as

Ψ : K × K −→ K × K Φ : K × K −→ K × K

(u, v) 7−→
(

u,
([y−1]S(x, y))(u)
v ([y1]S(x, y))(u)

)
(u, v) 7−→

(
([x−1]S(x, y))(v)
u ([x1]S(x, y))(v)

, v
)

.

(2.2.1)
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The formal group of the walk G is then defined as the subgroup of permutations of K×K

generated by Ψ and Φ.
In the study of this group, one often considers the orbit of the pair of algebraically

independent variables (x, y) under this group. The finiteness of this orbit is equivalent
to the finiteness of the group. Indeed, if the orbit is finite, then in particular the orbit
of (x, y) under the subgroup ⟨ΨΦ⟩ must also be finite, so (ΨΦ)n(x, y) = (x, y) for
some n ≥ 1. But then, by substitution (recall that x and y are variables), this implies
that (ΨΦ)n( f , g) = ( f , g) for any pair ( f , g) ∈ K × K. Therefore, (ΨΦ)n = 1. Since
Ψ2 = Φ2 = 1, this implies that the formal group of the walk G is finite, for every
element must be of the form (ΨΦ)k or Φ(ΨΦ)k for some integer k. For instance, the
orbit for the Kreweras model (see [Kre65]) is finite, as Figure 2.2.1 below demonstrates.

(x, y)

(x, x y)

(y, x y)

(y, x)

(y x, x)

(y x, y)

Ψ

Φ

Φ

Ψ

Ψ

Φ

Ψ(u, v) = (u, u v)

Φ(u, v) = (v u, v)

Figure 2.2.1 – The Kreweras model and its orbit

2.2.2 The Tutte invariants method

In this section, we present one application of the formal group of the walk to the
classification of models of walks with small steps, which is a technique to prove the
algebraicity of Q(x, y), based on the notion of Tutte invariants. We fix some weighted
model S with small steps, and we assume that the formal group of the walk G is finite.

Equations in one catalytic variable

In [BJ06], Bousquet-Mélou and Jehanne proved the algebraicity of power series so-
lution of well founded polynomial equations in one catalytic variable. Their method has
been further extended recently to the case of systems of divided difference equations by
Notarantonio and Yurkevich in [NY23]. These algebraicity results are in fact particular
cases of an older result in commutative algebra of Popescu [Pop86] but the strength of
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the strategy developed in [BJ06; NY23] lies in the effectiveness of the approach of the
latter.

Let L be a field of characteristic zero. For an unknown bivariate function F(u, t)
denoted for short F(u), we consider the functional equation

F(u) = F0(u) + t Q
(

F(u), ∆F(u), ∆(2)F(u), . . . , ∆(k)F(u), t, u
)

, (2.2.2)

where F0(u) ∈ L[u] is given explicitly and ∆ is the discrete derivative: ∆F(u) = F(u)−F(0)
u .

One can easily show that the equation (2.2.2) has a unique solution F(u, t) in L[u][[t]],
the ring of formal power series in t with coefficients in the ring L[u]. Such an equation
is called well-founded. Here is one of the main results of [BJ06].

Theorem 2.2.1 (Theorem 3 in [BJ06]). The formal power series F(u, t) defined by (2.2.2) is
algebraic over L(u, t).

We shall use Theorem 2.2.1 as a black box in order to establish the algebraicity of
power series solutions of a polynomial equation in one catalytic variable.

Tutte invariants: from two variables to one

We now present a method inspired by Tutte [Tut95] which was adapted by Bernardi,
Bousquet-Mélou and Raschel to small steps walks [BBR21] and by Bousquet-Mélou
to three quadrant walks [Bou23]. We reproduce here the method of [Bou23] which
relies on a suitable notion of t-invariants and an Invariant Lemma for multivariate power
series. The strategy developed in [Bou23] is an adaptation for formal power series of
the approach already introduced in Section 4.3 in [BBR21].

Definition 2.2.2. We denote by C(x, y)((t)) the field of Laurent series in t with coeffi-
cients in the field C(x, y). We denote by Cmul(x, y)((t)) the subring of C(x, y)((t)) formed
by series of the form

H(x, y) = ∑
n

pn(x, y)
an(x)bn(y)

tn,

where pn(x, y) ∈ C[x, y], an(x) ∈ C[x] and bn(y) ∈ C[y].

Definition 2.2.3 (Definition 2.4 in [Bou23]). Let H(x, y) ∈ Cmul(x, y)((t)) be a Laurent
series. The series H(x, y) is said to have poles of bounded order at 0 if for some natural
numbers m and n, the series xmynH(x, y) belongs to C[x, y]((t)) ⊂ CJx, y, tK.

Given a model S , one can use the notion of poles of bounded order at 0 to construct
an equivalence relation in the ring Cmul(x, y)((t)). To this purpose, we slightly adapt
Definition 2.5 in [Bou23] to encompass the large steps case.

Definition 2.2.4 (t-equivalence). Let F(x, y) and G(x, y) be two Laurent series in Cmul(x, y)((t)).
We say that these series are t-equivalent (with respect to K̃(x, y)), and we write F(x, y) ≡
G(x, y) if the series F(x,y)−G(x,y)

K(x,y) has poles of bounded order at 0.
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The t-equivalence is compatible with the ring operations on Laurent series applied
pairwise as stated below.

Proposition 2.2.5 (Lemma 2.5 in [Bou23]). If A(x, y) ≡ B(x, y) and A′(x, y) ≡ B′(x, y),
then A(x, y) + B(x, y) ≡ A′(x, y) + B′(x, y) and A(x, y)B(x, y) ≡ A′(x, y)B′(x, y).

The notion of t-equivalence allows us to define the notion of t-invariants as follows.

Definition 2.2.6 (t-Invariants (Definition 2.3 in [Bou23])). Let I(x) and J(y) be two Lau-
rent series in t with coefficients lying respectively in C(x) and C(y). If I(x) ≡ J(y), then
the pair (I(x), J(y)) is said to be a pair of t-invariants (with respect to the model S).

By Proposition 2.2.5, pairs of t-invariants are also preserved under sum and prod-
uct applied pairwise. We now state the main result on t-invariants [Bou23, Lemma 2.6]
whose proof originally for small steps models passes directly to the large steps con-
text. †.

Lemma 2.2.7 (Invariant Lemma). Let (I(x), J(y)) be a pair of t-invariants. If the coefficients
in the t-expansion of I(x)−J(y)

K(x,y) are all multiples of xy, then there exists a Laurent series A(t)
with coefficients in C such that I(x) = J(y) = A(t).

Note that each of the equations I(x) = A(t) and J(y) = A(t) involves only one
catalytic variable. In other words, the Invariant Lemma 2.2.7 allows us to produce
nontrivial equations with one catalytic variable from one pair of t-invariants satisfying
a certain analytic regularity.

Of course, one actually needs to find suitable pairs of invariants involving the sec-
tions Q(x, 0) and Q(0, y), so that I(x) = J(y) = A(t) gives nontrivial equations on
these sections. This will be done through the search for decouplings and rational invari-
ants, whose construction in [BBR21] exploits the finiteness of the group in a crucial
manner.

Decoupling

A first pair of invariants can be found by looking at the functional equation:

K̃(x, y)Q(x, y) = xy − ty([x−1]S(x, y))Q(0, y)

− tx([y−1]S(x, y))Q(x, 0) + t([x−1y−1]S(x, y))Q(0, 0).

Notice that the functional equation has the form

K̃(x, y)Q(x, y) = xy − A(x)− B(y) (2.2.3)

†. In [Bou23], Lemma 2.6 requires that the coefficients in the t-expansion of I(x)−J(y)
K(x,y) vanish at x = 0

and y = 0. This is equivalent to the condition stated in Lemma 2.2.7.

44



2. Small steps

with

A(x) = tx([y−1]S(x, y))Q(x, 0)− t([x−1y−1]S(x, y))Q(0, 0)

and B(y) = ty([x−1]S(x, y))Q(0, y).

If one manages to write the pair xy as

xy ≡ f (x) + g(y) (2.2.4)

for f (x) in C(x, t) and g(y) in C(y, t) two fractions, then from (2.2.3) and Proposi-
tion 2.2.5, one has the following t-equivalence (because it is obvious that Q(x, y) has
poles of bounded order at 0, for its coefficients belong to C[x, y]):

f (x)− A(x) ≡ B(y)− g(y).

Thus,
(I1(x), J1(y)) = ( f (x)− A(x), B(y)− g(y))

forms a pair of t-invariants, where the components I1(x) and J1(y) depend on the sec-
tions Q(x, 0) and Q(0, y). The condition to form this first pair of t-invariants was the
writing of xy as in (2.2.4). This motivates this first definition:

Definition 2.2.8. Let H(x, y) be a fraction in C(x, y, t). If there exist fractions F(x) ∈
C(x, t) and G(y) ∈ C(y, t) such that

H(x, y) ≡ F(x) + G(y),

then we say that H(x, y) admits a t-decoupling.

In [BBR21, Theorem 4.11], the authors describe how to determine if a given arbitrary
fraction admits a t-decoupling, and if it exists how to give such a decoupling. This
method requires the group of the walk G to be finite, so that (ΨΦ)n = 1. If f (x) ∈
C(x, t), let f (u, v) def

= f (u). Then since Ψ(u, v) and (u, v) share the same coordinate for
any pair (u, v) ∈ K × K, one has

n−1

∑
k=0

f ((ΦΨ)k(x, y))− f ((Ψ(ΦΨ)k)(x, y)) = 0.

Similarly, for g(y) ∈ C(y, t), and setting g(u, v) def
= g(v), then one also computes

n−1

∑
k=0

g((ΦΨ)k(x, y))− g((Ψ(ΦΨ)k)(x, y)) = 0.

Therefore, if h(x, y) ∈ C(x, y, t) admits a t-decoupling with

h(x, y) = f (x) + g(y) + K̃(x, y)r(x, y),
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then
n−1

∑
k=0

h((ΦΨ)k(x, y))− h((Ψ(ΦΨ)k)(x, y))

=
K̃(x, y)

xy

n−1

∑
k=0

(xyr)((ΦΨ)k(x, y))− (xyr)((Ψ(ΦΨ)k)(x, y)),

for K̃(x,y)
xy is constant on the pairs (u, v) in the orbit of (x, y) under the action of G. Thus,

if the factor of K̃(x, y) in the right-hand side has poles of bounded order at x = 0 and
y = 0, then one must have

n−1

∑
k=0

h((ΦΨ)k(x, y))− h((Ψ(ΦΨ)k)(x, y)) ≡ 0.

From [BBR21, Theorem 4.11], this last line actually characterizes the fact that h admits
a t-decoupling. The same theorem gives a way to obtain the x and y components of
the t-decoupling through some other well chosen sum. These linear combinations of
evaluations of functions on the pairs of the orbit of (x, y) under the action of G are
called orbit sums.

Rational invariants

Another source of invariants that we will use is the following:

Definition 2.2.9. A pair of t-invariants (F(x), G(y)) with F(x) ∈ C(x, t) and G(y) ∈
C(y, t) is called a pair of rational t-invariants. If F(x) or G(y) does not belong to C(t),
then the pair is called non-trivial.

It is natural to look for such t-invariants once a first pair (I1(x), J1(y)) involving
the sections Q(x, 0) and Q(0, y) has been found, since our goal is to ultimately find a
polynomial equation on I1(x) and J1(y) through the use of Lemma 2.2.7. We thus hope
to eliminate the poles of (I1(x), J1(y)) using an additional pair of rational t-invariants.

As in the previous paragraph, the rational t-invariants may be obtained through
the construction of well chosen orbit sums. It has been proved in [BBR21, Theorem 4.6]
that when the formal group of the walk G is finite, then such a pair exists automatically.
The corresponding orbit sum consists in starting from a random fraction H(x, y) and to
average it over the pairs of the orbit, i.e. to compute

Hσ(x, y) def
= ∑

(u,v)∈G·(x,y)
H(u, v). (2.2.5)

Then Hσ(x, y) ≡ I2(x) and Hσ(x, y) ≡ J2(y) for some I2(x) ∈ C(x, t) and J2(y) ∈
C(y, t).

From these two pairs of invariants, the goal is to hopefully combine them using Propo-
sition 2.2.5 to form a pair of t-invariants satisfying the condition of Lemma 2.2.7, and
eventually apply the machinery of Theorem 2.2.1 to prove the algebraicity of both
Q(x, 0) and Q(0, y), and finally the algebraicity of Q(x, y).
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(x, y)

(x, y x2)

(xy, y x2)

(xy, y)

(x y, x2y)

(x y, y)

(x, y)

(x, x2y)

Ψ Φ

ΨΦ

Ψ(u, v) = (u, v u2)

Φ(u, v) = (u v, v)

Φ ΨΨ

Ψ Φ

Figure 2.2.2 – The orbit of the Gessel model

Example: algebraicity of the Gessel walks

Here, we present an explicit application of the above strategy on the Gessel walks
(cf. Figure 2.2.2), whose generating function has been proved to be algebraic using this
method but with a different notion of invariants ‡. This proof originates in [BBR21].

The generating function Q(x, y) of the Gessel model satisfies the following func-
tional equation, put in normal form:

K̃(x, y)Q(x, y) = xy − t(y + 1)Q(0, y)− tQ(x, 0) + tQ(0, 0)

with K̃(x, y) = xy − t(x2y2 + x2y + y + 1).
(2.2.6)

The group of the walk for the Gessel model is finite (Figure 2.2.2). Thanks to [BBR21,
Proposition 4.11], we may rewrite the fraction xy as

xy = −1
x
+

y
t(y + 1)

− K̃(x, y)
tx(y + 1)

.

Therefore, reinjecting this expression inside (2.2.6), and putting on the left-hand side
everything having K̃(x, y) as a factor, we obtain the following first pair of t-invariants:

P1
def
= (I1(x), J1(y)) =

(
1
x
+ A(x),

y
t(y + 1)

− B(y)
)

. (2.2.7)

with A(x) = tQ(x, 0)− tQ(0, 0) and B(y) = t(y + 1)Q(0, y).
We can also exploit the finiteness of the group of the walk to produce a pair of

rational t-invariants. Computing the orbit sum (x)σ (see (2.2.5)) gives a satisfying result,
yielding the following pair of t-invariants

P2
def
= (I2(x), J2(y)) ≡

(
− 1

x2 +
1
tx

+ 2 +
x
t
− x2,

(1 + y)2

y
+

y
t2(1 + y)2

)
. (2.2.8)

‡. What characterizes a good notion of invariants is the existence of a lemma similar to Lemma 2.2.7.
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One notices that J1(y) + B(0) has a simple zero at y = 0, that J2(y) has a simple
pole at y = 0, so that (J1(y) + B(0)) · J2(y) has no pole at y = 0. This forms the second
component of the pair of invariants

P3
def
= (P1 + B(0)) · P2, (2.2.9)

(the products and sum being taken componentwise).
It remains to eliminate the pole at x = 0 of the first component. The first component

of P3 expands near 0 as

I3(x) = − 1
x3 + O(1/x2),

while the first component of P1 expands as

I1(x) =
1
x
+ O(1).

Therefore, one might hope to eliminate the pole at x = 0 of order 3 of I3(x) using I1(x).
Indeed, one shows that

I4(x) def
= I3(x) + I1(x)3 − (2A(0) +

1
t
− B(0))I1(x)2

−
(

2 +
A(0) + B(0)

t
+ 2A′(0) + 3A(0)2 − 2(2A(0) +

1
t
− B(0))A(0)

)
I1(x)

(2.2.10)
has no pole at x = 0. Note that J3(y) = 1

t − B′(0) +O(y), and that J1(y) = B(0) +O(y),
so that any polynomial combination of J3(y) and J1(y) has no pole at y = 0, so this
holds in particular for the series J4(x) defined as the second component of the pair P4,
defined as

P4
def
= P3 + P1

3 − (2A(0) +
1
t
− B(0))P1

2

−
(
2 +

A(0) + B(0)
t

+ 2A′(0) + 3A(0)2 − 2
(

2A(0) +
1
t
− B(0)

)
A(0)

)
P1.

(2.2.11)

Finally, one checks that
I4(x)− J4(y)

K̃(x, y)

has no pole at x = 0 nor at y = 0. Indeed, we have the following lemma:

Lemma 2.2.10. Consider S(x, y) a Laurent polynomial with denominator xayb, with a, b > 0.
Consider K(x, y) = 1 − t S(x, y), and take I(x) ≡ J(y) be a pair of invariants. Assume
also that I(x) and J(y) belong respectively to CJxK((t)) and CJyK((t)). Then the coefficients of
G(x, y) = I(x)−J(y)

K(x,y) are a multiple of xayb.
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Proof. By assumption, since I(x) ≡ J(y), we have that the series xkyk′G(x, y) belongs to
CJx, yK((t)) for some k, k′ ≥ 0.

In particular, G(x, y) belongs to C((t, y))((x)). We will thus expand with respect to
the variable x both sides of the following identity:

I(x)− J(y) = K(x, y)G(x, y).

On the one hand, we have
G(x, y) = λxα + O(xα+1)

for λ ̸= 0 a constant, and α ∈ Z the valuation of G(x, y) as a Laurent series in the
variable x. Moreover, by assumption on S(x, y), the expansion of K(x, y) with respect
to x is

K(x, y) = µx−a + O(x−a+1)

for µ ̸= 0. Hence,
K(x, y)G(x, y) = τxα−a + O(xα−a)

for τ ̸= 0 a constant.
On the other hand, since I(x) has no pole at x = 0, we have

I(x)− J(y) = I(0)− J(y) + O(x).

Therefore, we deduce that α ≥ a, and thus that the coefficients in t of G(x, y) are mul-
tiples of xa. Similarly, one shows that the coefficients in t of G(x, y) are multiples of
yb.

Thus the pair of invariants P4 satisfies the conditions of Lemma 2.2.7. Thus, we ob-
tain two polynomial equations in one catalytic variable, respectively on Q(x, 0) (upon
which depends A(x)) and Q(0, y) (upon which depends B(y)):

I4(x) = I4(0) (2.2.12)
J4(x) = I4(0). (2.2.13)

One then checks that the induced equations

Pol1(Q(x, 0), x, t, A(0), A′(0), B(0), I4(0)) = 0 (2.2.14)
Pol2(Q(0, y), y, t, A(0), A′(0), B(0), I4(0)) = 0 (2.2.15)

are well founded (see Section 2.2.2).
Therefore, Theorem 2.2.1 ensures that Q(x, 0) and Q(0, y) are algebraic. Moreover,

the method of [BJ06] gives explicit polynomial equations on Q(x, 0) and Q(0, y), so that
the number of Gessel walks may be computed explicitly.
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Chapter 3

Galois structure on the orbit and
invariants

We saw in the previous chapter the tools used in the classification of weighted walks
with small steps. Namely, two slightly different groups have been introduced for study-
ing the functional equation in two catalytic variables. The first is the classical group of the
walk of Section 2.1, seen as a group of automorphisms of the kernel curve. The second
is the formal group of the walk of Section 2.2, seen as group of rational transformations
of C(x, y)× C(x, y) that fix S(x, y). Both definitions of those groups required that the
weighted model had small steps.

— The construction of the classical group of the walk required that for x : C → P1 and
y : C → P1, both extensions C(x, y)/C(x) and C(x, y)/C(y) were Galois, which
was automatic for they had degree 2.

— Similarly, the construction of the formal group of the walk required that the nontriv-
ial solution u′ of the equation S(u′, v) = S(u, v) (or v′ of the equation S(u, v′) =
S(u, v)) was rational in terms of u and v, true when the steps are small.

In [BBM21], the question of extending such tools to the study of the generating func-
tion of walks based on models with arbitrarily large steps was raised. Since none of the
aforementioned conditions exist, the group could not be directly defined as above. If we
try to define the kernel curve Et as the projective closure of the affine curve K̃(x, y) = 0
for a fixed t, its structure is not as nice. For instance, the proofs that the kernel poly-
nomial K̃(x, y) was irreducible for a fixed t > 0 were ad-hoc, relying on its low de-
gree. Therefore, the approach that was taken by Bostan, Bousquet-Mélou and Mel-
czer in [BBM21] was to extend the formal group of the walk, by finding substitutions
(u, v) of the variables (x, y), leaving S(u, v) unchanged, and constructed starting from
(x, y) by changing at most one coordinate at a time. The induced graph, called the orbit
(which we present below in more detail), is named this way because for small steps
it corresponds to the orbit of the pair (x, y) under the group ⟨Φ, Ψ⟩. However, in the
general case, the transition from one coordinate to another is not induced by a rational
transformation.
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Some techniques that used the formal group of the walk could be extended to the
orbit when it is finite, mainly orbit sums. Indeed, consider the following example, taken
from [BBM21].

Example 3.0.1 (Proposition 5.2, [BBM21]). Consider the model whose Laurent polyno-
mial is S(x, y) = x + x−1 + x−2y + y−1. Writing K(x, y) = 1 − tS(x, y), the generating
function of walks starting at (0, 0) based on the underlying set of steps S satisfies the
following functional equation:

K(x, y)Q(x, y) = 1 − tx−1Q(0, y)− tyx−2Q(0, y)− tyx−2([x1]Q(x, y))− ty−1Q(x, 0)

= x−2y−1(x2y − ty2Q(0, y)− ty2([x1]Q(x, y))− tx2Q(x, 0).
(3.0.1)

The authors of [BBM21] then compute the orbit as in Figure 3.0.1 below.

(x, y)

(x1, y)

(x1, x
−1
2 )

(x1, x
−1)

(y−1, x−1)

(y−1, x−1
2 )(y−1, x−1

1 )

(x2, x
−1)

(x2, x
−1
1 )

(x2, y)

(x, x−1
1 ) (x, x−1

2 )

Figure 3.0.1 – The orbit of the model S is finite.

They then evaluate (3.0.1) on pairs of the orbit, and then perform linear combina-
tions of these equations. They obtain an equation

(x2yQ(x, y) + ∑
i,j

λi,jx2
i yjQ(xi, yj)) =

R(x, y)
K(x, y)

+ ∑
i,j

Ri,j (3.0.2)

with (xi, yj) pairs of the orbit, λi,j, Ri,j ∈ C(x, x1, x2, y, y1, y2), and R(x, y) ∈ C(x, y)
explicit. They extract the nonnegative part of both sides of the above equations. The

51



3. Galois structure on the orbit and invariants

nonnegative part [x≥y≥]F(x, y) of F(x, y) = x−ny−mG(x, y) for G(x, y) ∈ CJx, yK is
defined as

[x≥y≥]F(x, y) = ∑
i≥n,j≥m

x−ny−m[xiyj]G(x, y)

and is a power series in x and y by construction. This extends coefficientwise for a
series F(x, y) ∈ x−ny−mCJx, y, tK.

The nonnegative part extraction yields for this model the equation

x2yQ(x, y) = [x≥y≥]
R(x, y)
K(x, y)

.

This shows for instance that the series Q(1, 1) is D − f inite, as the diagonal of a rational
power series. ■

However, these orbit sums are found “by hand”, for the orbit lacks structure. In
this chapter, we show how one can associate to a weighted model S a group, which we
call the group of the walk, generated by Galois automorphisms of two field extensions.
We prove that the group of the walk acts faithfully and transitively on the orbit, analo-
gously to the classical group. When the orbit is finite, this group is itself presented as a
Galois group. We use this group and its interaction with the orbit to study some forms
of invariants and decouplings, respectively in Section 3.2 of the present chapter, and in
Chapter 4. We apply these two constructions to extend the algebraicity proof seen in
Section 2.2.2 to walks with arbitrarily large steps, in Chapter 5.

3.1 Group acting on the orbit

From now on, we fix S(x, y) ∈ C(x, y), and assume the following

Assumption 3.1.1. The fraction S(x, y) ∈ C(x, y) is non-univariate.

We denote by k the field C(S(x, y)), and

K̃(x, y) = A(x, y)− tB(x, y).

where S(x, y) = A(x,y)
B(x,y) for A(x, y), B(x, y) two relatively prime polynomials in C[x, y]

(in other words, K̃(x, y) is the numerator of 1 − tS(x, y)).
In particular, one may note that for any weighted model S with both positive and

negative steps in each direction, assumption 3.1.1 holds (the other cases being one-
dimensional are not interesting, as seen in Section 1.2.2).

In Section 3.1.1, we recall the definition of the orbit of a weighted model S with large
steps. We give it a Galois structure in Section 3.1.2. In Section 3.1.3, we define the group
of the walk and prove that it acts faithfully and transitively by graph automorphisms
on the orbit. Finally, we investigate the evaluation of rational fractions in C(x, y, t) on
the orbit.
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3.1.1 The orbit

We recall below the definition of the orbit introduced in [BBM21, Section 3], and we
also fix once and for all an algebraic closure K of C(x, y).

Definition 3.1.2 (Definition 3.1 in [BBM21]). Let (u, v) and (u′, v′) be in K × K.
If u = u′ and S(u, v) = S(u′, v′), then the pairs (u, v) and (u′, v′) are called x-adjacent,

and we write (u, v) ∼x (u′, v′). Similarly, if v = v′ and S(u, v) = S(u′, v′), then the pairs
(u, v) and (u′, v′) are called y-adjacent, and we write (u, v) ∼y (u′, v′). Both relations are
equivalence relations on K × K.

If the pairs (u, v) and (u′, v′) are either x-adjacent or y-adjacent, they are called ad-
jacent, and we write (u, v) ∼ (u′, v′). Finally, denoting by ∼∗ the reflexive transitive
closure of ∼, the orbit of the walk, denoted by O, is the equivalence class of the pair
(x, y) under the relation ∼∗.

(x, 1
xy )

(xy2z, 1
xy ) (− 1

z , 1
xy )

(x, y)

(z, y) (− 1
xy2z , y)

(z, 1
yz )

(xy2z, 1
yz )

(− 1
x , 1

yz )

(− 1
xy2z ,−xyz)

(− 1
x ,−xyz)

(− 1
z ,−xyz)

O12

O18

Õ12

C6

Figure 3.1.1 – A sample of finite orbits

The orbit O has a graph structure: the vertices are the pairs of the orbit and the
edges are x,y-adjacencies, colored here by their adjacency type (note that we do not con-
sider reflexive edges). The x-adjacencies are represented in red and the y-adjacencies
in blue. As the x and y adjacencies come from equivalence relations, the monochro-
matic connected components of O are cliques (any two vertices of such a component are
connected by an edge).
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Moreover, by definition of the transitive closure, the graph O is connected, that is,
every two vertices of the graph are connected by a path. In the sequel, we denote by
O either the set of pairs in the orbit or the induced graph. The structure considered
should be clear from the context. For a model S , its orbit type corresponds to the class
of its orbit under graph isomorphisms.

Section 10 in [BBM21] lists the distinct orbit types for models with steps in {−1, 0, 1, 2}2

with at least one large step. The orbit type being preserved when one reverses the
model, they also correspond to the orbit types of models with steps in {−2,−1, 0, 1}.
For these models, the finite orbit types are exactly O12, Õ12 and O18 in Figure 3.1.1 and
the cartesian product orbit-types of the Hadamard models that correspond to a step poly-
nomial of the form R(x) + P(x)Q(y) (see [BBKM16, Section 5] or [BBM21, Section 6] or
Section 4.6.2).

Example 3.1.3 (Small steps). For small steps models, the orbit when finite is always
isomorphic to a cycle whose vertices all belong to C(x, y)2, for it corresponds exactly to
the orbit of the pair (x, y) under the action of the formal group of the walk introduced
in Section 2.2. Example C6 in Figure 3.1.1 is for instance the unlabelled orbit of the small
steps model given by S(x, y) = 1/x + y + x/y [BM10, Example 2]. ■

Example 3.1.4 (The model Gλ). For the model Gλ = {(−1,−1), (0, 1), (1,−1), ((1, 0), λ), (2, 1)}
the polynomial K̃(Z, y, 1/S(x, y)) is reducible over k(x, y)[Z] and factors as

K̃(Z, y, 1/S(x, y)) =
(Z − x)yP(Z)

x3y2 + (λy + 1)x2 + y2x + 1

where P(Z) = x y2Z2 + (x2y2 + λxy + x)Z − 1.

Thus, an element (z, y) ∈ K2 distinct from (x, y) is y-adjacent to (x, y) if and only if z is
a root of P(Z). Its roots are of the form z,− 1

xy2z by the relation between the roots and
the coefficients of a degree two polynomial. One can then show that the orbit O12 in
Figure 3.1.1 is the orbit of the model Gλ, whatever the value of λ. ■

Before going on, let us discuss the finiteness of the orbit. For small steps walks,
the finiteness of the orbit depends only on the order of Φ ◦ Ψ. Some number theoretic
considerations on the torsion subgroup of the Mordell-Weil group of a rational elliptic
surface prove that this order, when finite, is bounded by 6, which provides a very easy
algorithm to test the finiteness of the group of the walk. This bound is valid for any
choice of weights contained in an algebraically closed field of characteristic zero (see
[HS08, Remark 5.1] and [SS19, Corollary 8.21]). For models with arbitrarily large steps,
there is currently no general criterion to determine whether the orbit is finite or not, the
only current way being to compute its pairs by saturation until it ends. There is a crite-
rion [BBM21, Theorem 7] to prove that a given model has an infinite orbit that applies
sometimes. This criterion, based on a fixed point argument, generalizes a criterion for
small steps walks developed in [BM10]. We hope that, analogously to the small steps
case, a geometric interpretation of the notion of orbit will provide some nice bounds
on the potential diameter of the orbit and thus some efficient algorithms to test the
finiteness of the orbit.
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3.1.2 The Galois extension of the orbit

In the remaining of the manuscript, we denote by k(O) the subfield of K generated
over k = C(S(x, y)) by all coordinates of the orbit O. Note that k(O) coincides with
C(O) since x, y belong to the orbit.

The field K introduced in Section 3.1.1 is an algebraic closure of C(x, y). By defi-
nition of the orbit, k(O) = C(O) is an algebraic field extension of C(x, y). Moreover,
since y is algebraic over k(x) and x is algebraic over k(y), then C(x, y) is an algebraic
field extension of k(x) and k(y). Therefore, k(O) is algebraic over k(x) and k(y). Propo-
sition 2.1.3 thus implies that K is an algebraic closure of k(x), k(y) and k(O).

We let any C-algebra endomorphism σ of K act on K × K coordinate-wise by

σ · (u, v) def
= (σ(u), σ(v)).

The following lemma establishes the compatibility of the equivalence relation ∼∗ with
the action of C-algebra endomorphisms of K.

Lemma 3.1.5. Let (u, v) and (u′, v′) be two pairs in K × K and σ : K → K be a C-algebra
endomorphism. Then (u, v) ∼x (u′, v′) (resp. (u, v) ∼y (u′, v′)) implies that σ · (u, v) ∼x

σ · (u′, v′) (resp. σ · (u, v) ∼y σ · (u′, v′)). The same holds for ∼∗.

Proof. Since σ is a C-algebra endomorphism, we have σS(u, v) = S(σu, σv) for any u, v
in K. Therefore, if (u, v) ∼x (u, v′) then S(σ(u), σ(v)) = σ(S(u, v)) = σ(S(u, v′)) =
S(σ(u), σ(v′)), so σ · (u, v) ∼x σ · (u, v′). The same argument applies if (u, v) ∼y (u′, v).
The general case of (u, v) ∼∗ (u′, v′) follows by induction.

As a direct corollary, we find the following lemma which ensures the set-wise sta-
bility of the orbit under certain endomorphisms of K.

Lemma 3.1.6. Let σx : K → K be a k(x)-algebra endomorphism. Then, for all (u, v) in the
orbit, σx · (u, v) is in the orbit. Similarly, the orbit is also stable under k(y)-algebra endomor-
phisms of K.

Proof. Let (u, v) be in the orbit, i.e. (u, v) ∼∗ (x, y). By Lemma 3.1.5, we find that

σx · (u, v) ∼∗ σx · (x, y) = (x, σx(y)).

By transitivity, we only need to prove that (x, σx(y)) is in the orbit. This is true because
S(x, σx(y)) = σxS(x, y) = S(x, y) since σx fixes C(x, S(x, y)) so (x, σx(y)) ∼x (x, y).

The above two lemmas imply that any k(x) or k(y)-algebra automorphism of K

induces a permutation of the vertices of O which preserves the colored adjacencies, and
is therefore a graph automorphism of O. The stability result of Lemma 3.1.6 translates as
a field theoretic statement.

Theorem 3.1.7. The extensions k(O)/k(x), k(O)/k(y) and k(O)/k(x, y) are Galois.
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k(O)

k(x, y)

k(x) k(y)

GxyGx Gy

Figure 3.1.2 – The field extensions attached to the orbit

Proof. We first prove that k(O)/k(x) is a Galois extension. Recall that the field exten-
sion k(O)/k(x) is algebraic and K is an algebraic closure of k(O) and k(x). Thus, by
Proposition 2.1.7 we only need to prove that σ(k(O)) ⊂ k(O) for every automorphism
σ in Aut(K/k(x)). This follows directly from Lemma 3.1.6. The proof for k(O)/k(y)
is entirely symmetric and the field extension k(O)/k(x, y) is Galois as subextension of
k(O)/k(x).

Theorem 3.1.7 gives a Galoisian framework to the orbit, which will be central in
our study of Galois invariants and decoupling. Remark that the algebraic extension
k(O)/k(x, y) may be of infinite degree. In Figure 3.1.2, we represent the different Galois
extensions involved in Theorem 3.1.7 and we denote their Galois groups as

Gx = Gal(k(O)/k(x)) Gy = Gal(k(O)/k(y)) Gxy = Gal(k(O)/k(x, y)).

Note that Gxy = Gy ∩ Gx.

3.1.3 The group of the walk and its action on the orbit

In this section, we prove that the orbit O is the orbit of the pair (x, y) under the
action of a certain group that generalizes the one introduced in the small steps case by
Bousquet-Mélou and Mishna [BM10, Section 3]. The following definition extends for
large steps models the Galoisian construction of [FIM99, Section 2.4] which corresponds
to the case of a biquadratic polynomial K̃(x, y).

Definition 3.1.8 (Group of the walk). For a model S with non-univariate step polyno-
mial, we denote by G the subgroup of Aut(k(O)/k) generated by Gx and Gy, and we
call it the group of the walk.

As explained in Section 3.1.2, every element of G induces a graph automorphism of
O, that is, a permutation of the vertices of O which preserves the colored adjacencies
on the orbit O. In Theorem 3.1.12 below, we prove that there exists a finitely generated
subgroup of G whose action on O is faithful and transitive, which is a notable property
of the classical group of the walk. It is clear that the group G acts faithfully on the orbit
O. Indeed, if an element σ of G is the identity on any element of the orbit then σ is the
identity on k(O). Therefore, σ is the identity. The construction of a finitely generated
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subgroup of G with a transitive action on the orbit requires a bit more work. We first
prove two lemmas on the polynomial K̃(x, y).

Lemma 3.1.9. The kernel polynomial K̃(x, y) is irreducible in C[x, y, t]. Therefore, it is irre-
ducible as a polynomial in C(x, t)[y], C(y, t)[x] and C(t)[x, y].

Proof. The kernel polynomial is a degree 1 polynomial in t, therefore it is irreducible in
C(x, y)[t]. Moreover, its content is one by construction. Therefore, by Gauss Lemma
[Lan02, chap. V par. 6 Theorem 10], the kernel polynomial is irreducible in C[x, y][t] =
C[x, y, t]. Since S(x, y) is not univariate by assumption 3.1.1, the polynomial K̃(x, y)
does not belong to C[x, t], so Gauss Lemma asserts that K̃(x, y) being irreducible in
C[x, t][y] is also irreducible in C(x, t)[y]. The same reasoning holds for the irreducibility
of K̃(x, y) in C(y, t)[x]. It is clear that since K̃(x, y) is irreducible in C[x, y, t] and not in
C(t), it is irreducible in C(t)[x, y].

Lemma 3.1.10. The polynomials K̃ (Z, y, 1/S(x, y)) and K̃ (x, Z, 1/S(x, y)) are respectively
irreducible in k(y)[Z] and k(x)[Z].

Proof. We only prove the first assertion by symmetry of the roles of x and y. Consider
the C[x]-algebra homomorphism

ϕ : C[x, t] → C(x, 1/S(x, y)) = k(x)
t 7→ 1/S(x, y)

Since S(x, y) is not univariate, the fractions x and 1/S(x, y) are algebraically indepen-
dent over C. Therefore the morphism ϕ is one-to-one, so it extends to a field isomor-
phism ϕ : C(x, t) → k(x) (onto by definition of k(x)), which extends to a C-algebra
isomorphism ϕ from C(x, t)[y] to k(x)[y]. Moreover, by Lemma 3.1.9, K̃(x, y) is irre-
ducible as a polynomial in C(x, t)[y]. Therefore, since K̃ (x, y, 1/S(x, y)) = ϕ(K̃(x, y, t))
and ϕ(C(x, t)) = k(x), we conclude that the polynomial K̃ (x, y, 1/S(x, y)) is irreducible
over k(x).

For large steps models, the extensions k(O)/k(x) and k(O)/k(y) might be of infinite
degree, hence the groups Gx and Gy might not be finite, not even finitely generated
(unlike the small steps case where they are always cyclic of order 2). However, note
that Gxy is the stabilizer of the pair (x, y) in the orbit. Therefore, the action of G on
(x, y) factors through the left quotients Gx/Gxy and Gy/Gxy which are proved to be
finite in the following lemma.

Lemma 3.1.11. The group Gxy has finite index in Gx and in Gy, with [Gx : Gxy] = degx K̃(x, y)
and [Gy : Gxy] = degy K̃(x, y).

Proof. The orbit Ω of y under the action of Gx is a subset of the roots of the polynomial
K̃(x, Z, 1/S(x, y)) ∈ k(x)[Z]. This polynomial is irreducible by Lemma 3.1.10, so Gx
acts transitively on its roots by Lemma 2.1.11, hence Ω coincides with the set of roots of
K̃(x, Z, 1/S(x, y)) which is a finite set of cardinal degy K̃(x, y). Moreover, the stabilizer
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of y for this action is precisely the group Gxy. Therefore, the quotient Gx/Gxy can be
identified with Ω, which proves that Gxy has finite index in Gx with [Gx : Gxy]. The
proof for the subgroup Gy is analogous.

Therefore, we fix, once and for all, a set Ix = {id, ιx
1, . . . , ιx

my+My
} of representatives

of the left cosets of Gx/Gxy, and a set Iy = {id, ι
y
1, . . . , ι

y
mx+Mx

} of representatives of the
left cosets of Gy/Gxy. By construction, one has

Gx =
〈

Ix, Gxy
〉

, Gy =
〈

Iy, Gxy
〉

, and G =
〈

Ix, Iy, Gxy
〉

.

We now have all the ingredients to prove the transitivity of the action of a finitely
generated subgroup of G on O. We only recall that the distance between two vertices
of a graph is the number of edges in a shortest path connecting them.

Theorem 3.1.12 (Transitivity of the action). The subgroup of G generated by Ix and Iy acts
transitively on the orbit O.

Proof. We show that for all pairs (u, v) of O there exists an element σ in ⟨Ix, Iy⟩ such
that σ · (x, y) = (u, v). As the graph of the orbit is connected, the proof is done by
induction on the distance between (x, y) and (u, v). If (u, v) is at distance zero to (x, y)
then (u, v) = (x, y) and we set σ = id.

Let (u, v) be in O of positive distance d to (x, y). Then there exists a pair (u′, v′)
at distance d − 1 to (x, y) that is adjacent to (u, v). Without loss of generality, one can
assume that (u′, v′) is x-adjacent to (u, v), that is, u = u′. By induction hypothesis,
there exists σ in

〈
Ix, Iy

〉
such that σ · (x, y) = (u, v′). Therefore, since (u, v′) ∼x (u, v),

the application of σ−1 implies by Lemma 3.1.5 that (x, y) ∼x (x, σ−1(v)).
Thus, one has S(x, y) = S(x, σ−1v), hence both y and σ−1v are roots of K̃ (x, Z, 1/S(x, y))

which is an irreducible polynomial in k(x)[Z] by Lemma 3.1.10. Therefore, by Lemma 2.1.11,
there is an element σx in Gx such that σx(y) = σ−1(v). Since Ix is by definition a set of
representatives of the left cosets of Gx/Gxy, there exists ιx

i in Ix such that ιx
i Gxy = σxGxy.

Thus, ιx
i = σx ◦ τ for some τ ∈ Gxy, and ιx

i · (x, y) = σx · (x, y) = (x, σ−1v). We hence
obtain the identity

(σιx
i ) · (x, y) = σ · (x, σ−1v) = (u, v).

This result shows that the orbit O is actually the orbit of the pair (x, y) under the
action of a finitely generated subgroup of G. We deduce several easy corollaries:

Corollary 3.1.13. Let (u, v) and be a pair in O. Then

(i) The following extensions are isomorphic:

k(x, y)/k ≃ k(u, v)/k
k(x)/k ≃ k(u)/k
k(y)/k ≃ k(v)/k
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(ii) The following groups are isomorphic:

Gxy ≃ Guv
def
= Gal(k(O)/k(u, v))

Gx ≃ Gu
def
= Gal(k(O)/k(u))

Gy ≃ Gv
def
= Gal(k(O)/k(v))

Moreover, the group Gu acts transitively on the set of pairs x-adjacent to (u, v), and the
group Gv acts transitively on the set of pairs y-adjacent to (u, v).

(iii) The field k(O) is the smallest field in K that contains k(x, y), and so that both extensions
k(O)/k(x) and k(O)/k(y) are Galois.

Proof. Note that from Theorem 3.1.12, there exists σ in G such that σ · (x, y) = (u, v)
and σ′ in G such that σ′ · (x, y) = (u′, v′). We can now prove the different points.

For (i), it is easy to see that σ induces a k-algebra isomorphism between k(x, y) and
k(u, v), whose restriction to k(u) and k(v) also gives isomorphisms.

The proof of the first part of (ii) is similar, the different isomorphisms being given
through the conjugation by σ in G. For the second part, since G acts transitively on
the set of pairs x-adjacent to (u, v), then so does Gu. Indeed, if σ · (u, v) = (u, v′),
then σ(u) = u so σ ∈ Gu. The same proof shows that Gv acts transitively on the pairs
y-adjacent to (u, v).

We finally prove (iii). We first make the following observation. By Proposition 2.1.3,
since the extensions K/k(x), k(O)/k(x) and K/k(y), k(O)/k(y) are Galois, the groups
Gx = Gal(k(O)/k(x)) and Gy = Gal(k(O)/k(y)) are the restrictions to k(O) of the

groups G̃x
def
= Gal(K/k(x)) and G̃y

def
= Gal(K/k(y)). Therefore, one has by Theo-

rem 3.1.12 that the group G̃ def
= ⟨G̃x, G̃y⟩ acts transitively on the orbit.

Now, let M be such that k(x, y) ⊂ M ⊂ K, and assume that the extensions M/k(x)
and M/k(y) are Galois. Since M/k(x) is Galois and K is an algebraic closure of M, then
for σx in G̃x, one has σx(M) ⊂ M. Similarly, since M/k(y) is Galois, one has for σy in G̃y

that σy(M) ⊂ M. By induction, we deduce that for all σ in G̃, one has σ(M) ⊂ M.
We now prove that k(O) ⊂ M, and to do this we only need to show that k(u, v) is

contained in M for all pairs (u, v) in the orbit. Since, G̃ acts transitively on the orbit,
let σ be in G̃ such that k(u, v) = σ(k(x, y)). From the facts that σ(M) ⊂ M and that
k(x, y) ⊂ M, we deduce that k(u, v) ⊂ M.

3.1.4 Computations of some groups

For large steps models with an infinite orbit, it might be quite difficult to give a
precise description of the automorphisms in Ix and Iy. Indeed, they act as a permutation
on the infinite orbit O and their action on x or y is not in general given by a rational
fraction in x and y as in the small steps case. When the steps are small or when the orbit
is finite, one might be able to give a more precise description of these generators and of
the overall group. We give three examples.
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Small steps models

For small steps models, we have k(O) = k(x, y) = C(x, y) (see Example 3.1.3).
Moreover, the field extensions k(O)/k(x) and k(O)/k(y) are both of degree 2. In-
deed, the model has small steps, and one step in each direction, so that degx K̃(x, y) =
degy K̃(x, y) = 2, so that Gx and Gy are groups of order 2 and thus isomorphic to Z/2Z.
This is similar to the situation of 2.1.9, which was used to define the classical group of
the walk.

We may be more precise, and give the explicit generators in terms of the formal
group of the walk of 2.2.1. Consider the endomorphisms ϕ and ψ of C(x, y) defined
as follows: for f (x, y) ∈ C(x, y), we set ϕ( f ) = f (Φ(x, y)) and ψ( f ) = f (Ψ(x, y)). It
is easily seen that ψ ∈ Gx, that ϕ ∈ Gy, and that they both are non-trivial involutions.
Thus, we have

Gx = ⟨ψ⟩ ≃ Z/2Z Gy = ⟨ϕ⟩ ≃ Z/2Z Gxy = 1

Thus, one can choose Ix = {id, ψ} and Iy = {id, ϕ}.
Note that G is isomorphic to the groups corresponding to both approaches defined

in Section 2.1 and Section 2.2.

The model Gλ

(x, 1
xy )

(xy2z, 1
xy ) (− 1

z , 1
xy )

(x, y)

(z, y) (− 1
xy2z , y)

(z, 1
yz )

(xy2z, 1
yz )

(− 1
x , 1

yz )

(− 1
xy2z ,−xyz)

(− 1
x ,−xyz)

(− 1
z ,−xyz)

ιx

ιy (ιy)2

ιyιx(ιy)−1 (ιy)2ιx(ιy)−2

ιx(x) = x
ιx(y) = 1

xy

ιx(z) = xy2z

τ(x) = x
τ(y) = y
τ(z) = − 1

xy2z

ιy(x) = z
ιy(y) = y
ιy(z) = − 1

xy2z

Figure 3.1.3 – The elements of Ix and Iy for the model Gλ

In the case of Gλ, we saw in Example 3.1.4 that k(O) = C(x, y, z) where z is a root of
the irreducible polynomial

P(Z) = xy2Z2 + (x2y2 + λxy + x)Z − 1.
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The extension k(O)/k(x, y) = k(x, y, z)/k(x, y) has degree 2. Thus, we find that

Gxy ≃ Z/2Z.

The extension k(O)/k(y) has degree 6, hence its Galois group is either S3 or Z/6Z.
In this last case, the group Gxy would be a normal subgroup of Gy. As k(x, y) = k(O)Gxy ,
the extension k(x, y)/k(y) would be Galois by [Sza09, Theorem 1.2.5]. This is impossi-
ble since the root z of K̃(Z, y, 1/S(x, y)) is not in k(x, y). Thus, we find that

Gy ≃ S3.

The extension k(O)/k(x) has degree 4. Its Galois group has order four and therefore
either isomorphic to Z/2Z × Z/2Z or to Z/4Z. Consider σ ∈ Gx. If σ ∈ Gxy, then
since Gxy has order 2, then σ2 = 1. Otherwise, σ = ιx

1τ for τ in Gxy since [G : Gxy] = 2.
One has ιx

1 · (x, y) = (x, 1
xy ). Now, since (x, y) ∼x (z, y), one has by Lemma 3.1.5 that

(x, 1
xy ) ∼x (σ(z), 1

xy ). Therefore, following Figure 3.1.3, we see that ιx
1(z) belongs to

{xy2z,− 1
z}. Since, k(O) = C(x, y, z), this determines completely ιx

1 on k(O). For both
expressions of ιx

1 on C(x, y, z), we find that (ιx
1)

2(z) = z. This implies that (ιx
1)

2 is the
identity on k(O). Therefore, σ2 = (ιx

1)
2τ2 = 1. Hence, all elements of Gx have order 2,

so that
Gy ≃ Z/2Z × Z/2Z.

To summarize, we have

Gx ≃ Z/2Z × Z/2Z Gy ≃ S3 Gxy ≃ Z/2Z.

for the respective Galois groups, and the above discussion allows to give expressions
for the generators in Ix, Iy and Gxy in Figure 3.1.3. They satisfy the relations (ιx)2 =

(ιy)3 = τ2 = id.

Hadamard models

The notion of Hadamard models has been introduced by Bostan, Bousquet-Mélou
and Melczer who proved that these models are always D-finite [BBM21, Proposition 21].
Hadamard models are characterized by the shape of their Laurent polynomial:

S(x, y) = P(x)Q(y) + R(x)

for P, Q and R three Laurent polynomials.
The Hadamard models form an interesting class because their orbit is always finite

and in the form of a cartesian product. Indeed, we have the following proposition:

Proposition 3.1.14 (Proposition 3.22 in [BBM21]). The orbit of a Hadamard model given
by S(x, y) = P(x)Q(y) + R(x) has the form x × y where x = x0, . . . , xm−1 the m distinct
solutions xi of P(X)Q(y) + R(X) = P(x)Q(y) + R(x) and y = y0, . . . , yn−1 the n distinct
solutions yi of Q(Y) = Q(y). Hence, the field k(O) is equal to C(x, y).
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As a consequence, the orbits of the Hadamard models, even though their size might
be arbitrarily large, always have diameter two. This means that the distance between
any two vertices is at most two as illustrated below:

(x0, y0) (x0, yj)

(xi, y0) (xi, yj)

X0

X1

(x0, y0) (xi, y0)

(x0, yj) (xi, yj)

Y0

Y1

Our goal in the remaining of this section is to give an explicit description of the
group of the walk G for a Hadamard model when the step polynomial has the form
S(x, y) = Q(y) + R(x) or P(x)Q(y). In that situation, we shall prove that the group of
the walk is a direct product of two simple Galois groups.

Proposition 3.1.15. Consider a Hadamard model with step polynomial of the form Q(y) +
P(x) or P(x)Q(y). The following holds.

— The field kinv = k(x) ∩ k(y) is C(P(x), Q(y)).

— In the notation of Proposition 3.1.14, the elements of x satisfy P(xi) = P(x) and the
field extensions C(x)/C(P(x)) and C(y)/C(Q(y)) are both Galois. We denote their
respective Galois groups Hx and Hy.

— The group of the walk G is isomorphic to Hx × Hy.

Before proving Proposition 3.1.15, we recall some terminology. We say that two field
extensions L/K and M/K, subfields of a common field Ω, are algebraically independent
if any finite set of elements of L, that are algebraically independent over K, remains
algebraically independent over M.

We say that L/K and M/K are linearly disjoint over K if any finite set of elements of L,
that are K-linearly independent, are linearly independent over M. The field compositum
of L and M is the smallest subfield of Ω that contains L and M.

Finally, we say that L/K is a regular field extension if K is relatively algebraically
closed in L and L/K is separable. We recall that K is relatively algebraically closed in
L if any element of L that is algebraic over K belongs to K. Note that in our setting, all
fields are in characteristic zero so L/K is always separable.

Proof. The proof of the first item is obvious. We thus only write the proof of the sec-
ond one. First, let us prove that C(x, Q(y))/C(P(x), Q(y)) is Galois with Galois group
isomorphic to Hx. We remark that since x and y are algebraically independent over
C, the field extension C(P(x), Q(y))/C(P(x)) is purely transcendental of transcen-
dence degree one, hence regular. Since C(x)/C(P(x)) is an algebraic extension, the
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element Q(y) remains transcendental over C(x). Thus, the field extensions C(x) and
C(P(x), Q(y)) are algebraically independent over C(P(x)). Thus, by Lemma 2.6.7 in
[FJ23], the fields C(x) and C(P(x), Q(y)) are linearly disjoint over C(P(x)). Then,
the field C(x, Q(y)) that is the compositum of C(x) and C(P(x), Q(y)), is Galois over
C(P(x), Q(y)) with Galois group isomorphic to Hx (see page 35 in [FJ23]). Analogously,
one can prove that C(y, P(x))/C(P(x), Q(y)) is Galois with Galois group isomorphic
to Hy. For convenience, we introduce for the remaining of the proof

H′
x = Gal(C(x, Q(y))/C(P(x), Q(y))) ≃ Hx

H′
y = Gal(C(x, P(x))/C(P(x), Q(y))) ≃ Hy.

We note that the field extension C(x)/C is regular of transcendence degree 1. Since
x is transcendental over C(y), the fields extensions C(x) and C(y) are algebraically
independent over C and therefore linearly disjoint over C by Lemma 2.6.7 in [FJ23].
By the tower property of the linear disjointness (Lemma 2.5.3 in [FJ23]), we find that
C(x, Q(y)) is linearly disjoint from C(y) over C(Q(y)). Using once again the tower
property, we conclude that C(x, Q(y)) and C(y, P(x)) are linearly disjoint over

kinv = C(P(x), Q(y)) = k(x) ∩ k(y).

Thus, Lemma 2.5.6 in [FJ23] implies that the following restriction map is a group iso-
morphism.

G −→ H′
x × H′

y

σ 7−→ (σ|C(x,Q(y)), σ|C(y,P(x))).

By the above, we conclude that G is isomorphic to Hx × Hy.

3.1.5 Orbit sums

One of the purposes of the orbit is to provide a nice family of changes of variables,
in the sense that the kernel K(x, y) = 1 − t S(x, y) is constant on the orbit: for all pairs
(u, v) of the orbit, K(u, v) = K(x, y) (because S(x, y) = S(u, v)). This polynomial be-
ing a factor of the left-hand side of the functional equation satisfied by the generating
function, one can evaluate the variables (x, y) at any pair (u, v) of the orbit and obtain
what is called an orbit equation. Indeed, the generating function Q(x, y) and its sections
Q(x, 0) and Q(0, y) belong to the ring of formal power series in t with coefficients in
C[x, y] so that their evaluation at (u, v) belongs to the ring C[O]JtK. Note that such an
evaluation leaves the variable t fixed.

The strategy developed in [BBM21, Section 4] for models with small forward steps
consists in forming linear combinations of these orbit equations so that the resulting
equation is free from sections. From the section-free equation, Bostan, Bousquet-Mélou
and Melczer sometimes succeed in isolating the generating function Q(x, y) and ex-
pressing it as a diagonal of algebraic fractions which leads to its D-finiteness by [Lip88].
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For models with small backward steps, it is quite easy to produce a section-free equa-
tion from

K̃(x, y)Q(x, y) = xy + A(x) + B(y)

when the orbit contains a cycle. However, it is very unlikely that, for models with
small backward steps and at least one large step, such a section free equation suffices
to characterize the generating function.

In the context of chapters 3 and 4, we want to evaluate the variables (x, y, t) at
(u, v, 1/S(x, y)) for (u, v) an element of the orbit. Since K̃(u, v, 1/S(x, y)) = 0 for any
element (u, v) of the orbit O, such an evaluation is similar to the kernel method used in
[KR12] for models with small steps.

More precisely, let us define a 0-chain as a formal C-linear combination of elements
of the orbit O with finite support. This terminology is borrowed from graph homology
(see Section 4.4 for some basic introduction). Let γ = ∑(u,v)∈O c(u,v)(u, v) be a zero
chain. Since the coefficients c(u,v) are complex and almost all zero, the evaluation Pγ of
a polynomial P(x, y) ∈ C[x, y, t] at γ is defined as

Pγ = ∑
(u,v)∈O

c(u,v)P(u, v, 1/S(x, y)),

and belongs to k[O]. The evaluation of K̃(x, y) at any 0-chain vanishes so that one can
not evaluate a rational fraction in C(x, y, t) whose denominator is divisible by K̃(x, y).
This motivates the following definition.

Definition 3.1.16. Let H(x, y) = A(x,y)
B(x,y) be a rational fraction in C(x, y, t) where A(x, y)

and B(x, y) are relatively prime polynomials in C[x, y, t]. We say that H(x, y) is a regular
fraction if B(x, y) is not divisible by the kernel polynomial K̃(x, y) in C[x, y, t].

Remark 3.1.17. Since S(x, y) is not univariate, the kernel polynomial involves all three
variables x,y and t, so does a multiple of K̃(x, y) (by a simple degree argument). There-
fore, any fraction in C(x, t) or C(y, t) is regular. ■

We endow the set of regular fractions in C(x, y, t) with the following equivalence
relation: two regular fractions H(x, y), and G(x, y) are equivalent if there exists a regular
fraction R(x, y) such that H(x, y)− G(x, y) = K̃(x, y)R(x, y). We denote by C the set of
equivalence classes.

Since the equivalence relation is compatible with the addition and multiplication
of fractions, one easily notes that C can be endowed with a ring structure. Moreover,
since K̃(x, y) is irreducible in C[x, y, t], any non-zero class is invertible proving that C is
a field. Indeed, if H(x, y) is a regular fraction that is not equivalent to zero, then one
can write H(x, y) = A(x,y)

B(x,y) with A(x, y), B(x, y) ∈ C[x, y, t] relatively prime and K̃(x, y)

does not divide A(x, y) nor B(x, y). Thus, the fraction B(x,y)
A(x,y) is regular and its class in C

is an inverse of the class of A(x,y)
B(x,y) .

Moreover, since S(x, y) is not univariate, any non-zero element in C(x, t) or C(y, t)
is a regular fraction which is not equivalent to zero. Therefore, the fields C(x, t) and
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C(y, t) embed into C. By an abuse of notation, we denote by C(x, t) and C(y, t) their
image in C.

Proposition 3.1.18. For a fraction H(x, y) in C(x, y, t) and (u, v) in O, the evaluation H(u, v, 1/S(x, y))
of H(x, y) at (u, v) is a well defined element of K if and only if H(x, y) is a regular fraction.
Moreover, the C-algebra homomorphism

ϕ : C −→ k(x, y)
P(x, y, t) 7−→ P(x, y, 1/S(x, y))

is well defined and is a field isomorphism which maps isomorphically C(t) onto k = C(S(x, y)),
C(x, t) onto k(x) and C(y, t) onto k(y).

Proof. Recall that by Theorem 3.1.12, given a pair (u, v) ∈ O, there exists σ ∈ G such
that σ · (x, y) = (u, v). The automorphism σ induces a k-algebra isomorphism between
k(x, y) and k(u, v) so that the evaluation at (x, y, 1/S(x, y)) composed by σ is the eval-
uation at (u, v, 1/S(x, y)). Thus, we only need to prove the first part of the proposition
for the evaluation at (x, y, 1/S(x, y)).

Since K̃(x, y, 1/S(x, y)) = 0, it is clear that one can not evaluate a fraction that is
not regular. Thus, we only need to show that the evaluation of a regular fraction at
(x, y, 1/S(x, y)) is well defined. Let us write H(x, y) = A(x,y)

B(x,y) where A(x, y) and B(x, y)

are relatively prime in C[x, y, t], and the kernel polynomial K̃(x, y, t) does not divide
B(x, y). Since K̃(x, y) does not divide B(x, y) in C[x, y, t] and K̃(x, y) has content 1 in
C[x, y][t], the polynomial K̃(x, y) does not divide B(x, y) in C(x, y)[t] (it is a straightfor-
ward application of Gauss Lemma). In C(x, y)[t], the Euclidean division of B(x, y) by
K̃(x, y), which has degree 1 in t, is therefore of the form

B(x, y) = K̃(x, y)M(x, y) + R(x, y),

where R(x, y) is a non-zero element of C(x, y). Evaluating this identity at (x, y, 1/S(x, y))
yields B(x, y, 1/S(x, y)) = R(x, y). Since x, y are algebraically independent over C, one
finds that R(x, y) ̸= 0 so that B(x, y, 1/S(x, y)) is non-zero and H (x, y, 1/S(x, y)) is well
defined.

By Lemma 3.1.9, the kernel polynomial K̃(x, y) is irreducible as a polynomial in
C(t)[x, y]. The ring R = C(t)[x, y]/(K̃(x, y)) is therefore an integral domain. By [Mat80,
page 9, (1K)], its quotient field is precisely C. Now, the evaluation map from C(t)[x, y]/(K̃(x, y))
to k[x, y] is a ring isomorphism which maps isomorphically C(t) onto k. The latter ring
isomorphism extends to an isomorphism between the quotient field C of C(t)[x, y]/(K̃(x, y))
and the quotient field k(x, y) of k[x, y] which concludes the proof.

If H(x, y) is a regular fraction, we denote H(u,v) its evaluation at an element (u, v) of
the orbit and we can extend this evaluation by C-linearity to any 0-chain γ. We denote
by Hγ the corresponding element in k(O). Such an evaluation is called an orbit sum.
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We let the group G act on 0-chains by C-linearity, that is,

σ ·
(

∑
(u,v)∈O

c(u,v) (u, v)

)
def
= ∑

(u,v)∈O
c(u,v) σ · (u, v).

The following lemma shows that the evaluation morphism is compatible with the ac-
tion of G on k(O) and on 0-chains.

Lemma 3.1.19. Let σ be an element of G, γ be a 0-chain, and H(x, y) be a regular fraction in
C(x, y, t). Then σ(Hγ) = Hσ·γ.

Proof. Let (u, v) be an element in the orbit. Since σ fixes k = C(S(x, y)), we have

σ(H(u,v)) = σ (H(u, v, 1/S(x, y)) = H (σ(u), σ(v), 1/S(x, y)) = Hσ·(u,v).

The general case follows by C-linearity.

Two equivalent regular fractions have the same evaluation in k(O). Thus, certain
classes of regular fractions can be characterized by the Galoisian properties of their
evaluation in k(O). This idea underlies the Galoisian study of invariants and decou-
pling in Section 3.2 and Chapter 4. To conclude, we want to compare the equivalence re-
lation among regular fractions that are elements of Cmul(x, y)((t)) and the t-equivalence
(see Section 2.2.2 for notation).

Proposition 3.1.20. Let F(x, y) ∈ Cmul(x, y)((t)) that is also a regular fraction in C(x, y, t).
If F(x, y) is t-equivalent to 0, that is, the t-expansion of F(x, y)/K̃(x, y) has poles of bounded
order at 0, then the fraction F(x, y)/K̃(x, y) is regular so that the regular fraction F(x, y) is
equivalent to zero by definition.

Proof. Our proof starts by following the lines of the proof of Lemma 2.6 in [Bou23].
Assume that F(x) is t-equivalent to 0, so that there exists H(x, y) ∈ Cmul(x, y)((t)) with
poles of bounded order at 0 such that

F(x, y) = K̃(x, y)H(x, y). (3.1.1)

Analogous arguments to Lemma 2.6 in [Bou23] show that there exists a root X(y, t)
of K(., y, t) = 0 that is a formal power series in t with coefficients in an algebraic closure
of C(y) and with constant term 0. Since H(x, y) and F(x) have poles of bounded order
at 0, one can specialize (3.1.1) at x = X(y, t) and find F(X(y, t), y, t) = 0. Writing F = P

Q
where P(x, y), Q(x, y) ∈ C[x, y, t] are relatively prime, one finds that P(X(y, t), y, t) = 0.
Since K̃(., y, t) is an irreducible polynomial over C(y, t) by Lemma 3.1.9, we conclude
that K̃(x, y) divides P(x, y). Because P(x, y) and Q(x, y) are relatively prime, we find
that K̃(x, y) doesn’t divide Q(x, y) which concludes the proof.

Clearly, the regular fraction K̃(x,y)
y−t is equivalent to zero but not t-equivalent to zero,

so the converse of Proposition 3.1.20 is false. With the strategy presented in Section 2.2.2
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(which is summarized and applied in Chapter 5) in mind, we will use in the next sec-
tions the notion of equivalence on regular fractions and its Galoisian interpretation to
produce pairs of Galois invariants and Galois decoupling pairs. For each pair of Galois in-
variants and decoupling functions constructed for the models presented in Section 4.6,
it happens that any equivalence relation among these regular fractions is actually a t-
equivalence. Unfortunately, we do not have any theoretical argument yet to explain
this phenomenon.

3.2 Galois invariants

In this section, we discuss a form of invariants, called Galois invariants, whose inter-
est is to provide rational t-invariants (see 2.2.2). We prove that the finiteness of the orbit
is equivalent to the existence of a non-constant pair of such invariants. Moreover, we
show that if the orbit is finite, the field of Galois invariants has the form k(c) for some
element c transcendental over k, which is easy to obtain from the data of a finite orbit.

3.2.1 Galois formulation of invariants

In Section 2.2.2, we needed to construct t-invariants that were rational fractions, that
is, pairs (I(x), J(y)) satisfying an equation of the form

I(x)− J(y) = K̃(x, y)R(x, y)

with R having poles of bounded order at zero (I and J are t-equivalent).
We introduce the weaker notion of pair of Galois invariants based on rational equiv-

alence. Our definition extends Definition 4.3 in [BBR21] to the large steps context.

Definition 3.2.1. Let (I(x, t), J(y, t)) be a pair of rational fractions in C(x, t) × C(y, t)
(hence regular, as they are univariate). We say that this pair is a pair of Galois invariants
if there exists a regular fraction R(x, y) such that I(x, t)− J(y, t) = K̃(x, y)R(x, y), that
is, the regular fractions I(x, t) and J(y, t) are equivalent.

From Proposition 3.1.20, a pair of rational t-invariants is a pair of Galois invariants.
Therefore, it is justified to look for a pair of Galois invariants first, and then to check by
hand if their difference is t-equivalent to 0.

Moreover, the notion of pairs of Galois invariants is purely algebraic while the no-
tion of pairs of t-invariants involves some analytic considerations which might be dif-
ficult to handle. Using Lemma 3.1.18, the set of pairs of Galois invariants corresponds
to a subfield of k(O) which can be easily described.

Proposition 3.2.2. Let P = (I(x, t), J(y, t)) be a pair of fractions in C(x, t)× C(y, t). Then
P is a pair of Galois invariants if and only if the evaluations I(x,y) and J(x,y) are equal, and thus
belong to k(x) ∩ k(y) ⊂ k(O). Moreover, the pair P is a constant pair of Galois invariants if
and only if I(x,y) = J(x,y) is in k.
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Therefore we denote the field k(x)∩ k(y) as kinv and, by an abuse of terminology, call
its elements Galois invariants. The definition of the group G and the Galois correspon-
dence applied to k(O)/k(x) and k(O)/k(y) show that f in k(O) is a Galois invariant
if and only if f is fixed by G. Moreover, Proposition 3.2.2 reduces the question of the
existence of a nonconstant pair of Galois invariants to the question of deciding whether
kinv = k or not.

3.2.2 Existence of nontrivial Galois invariants and finiteness of the orbit

The structure of k(O)/k(x) and k(O)/k(y), both Galois, corresponds in geometry
to a finite algebraic correspondence. This is studied in a geometric setting in [Fri78]. In
particular, Theorem 1 and the lemma following Theorem 1 imply when rephrased in
our context that the existence of a non-constant pair of Galois invariants is equivalent
to the finiteness of the orbit. These theorems are more general, holding in positive
characteristic and in higher dimensional context. In Theorem 3.2.3 below, we rephrase
and prove Fried’s Theorem in our context. This generalizes [BBR21, Theorem 7] in the
small steps case.

Theorem 3.2.3. The following are equivalent:

1. The orbit O is finite.

2. There exists a finite Galois extension M of k(x) and k(y) such that Gal(M/k(x)) and
Gal(M/k(y)) generate a finite group ⟨Gal(M/k(x)), Gal(M/k(y))⟩ of automorphisms
of M.

3. There exists a nontrivial Galois invariant, that is, k ⊊ kinv.

Proof. (1) ⇒ (2): Set M = k(O). The group G =
〈

Gx, Gy
〉

acts faithfully on the orbit, so
it embeds as a subgroup of S(O), the group of permutations of the pairs of the orbit O.
The orbit is finite, therefore G is finite.

(2) ⇒ (3): Write H = ⟨Gal(M/k(x)), Gal(M/k(y))⟩. By the same argument as in the
beginning of Section 3.1.3, the field MH is the field kinv of Galois invariants. Since H
is finite, the extension M/kinv is finite of degree |H|, hence the subextension k(x)/kinv
is also finite. Since the extension k(x)/k is transcendental by hypothesis on S , we con-
clude that k ⊊ kinv. Proposition 3.2.2 yields the existence of a pair of nontrivial Galois
invariants.

(3) ⇒ (1): Let (I(x, t), J(y, t)) be a pair of nontrivial Galois invariants. By the as-
sumption on the model, S(x, y) and x are algebraically independent over C. Since
I(x, 1/S(x, y)) is not in C(1/S(x, y)) by Lemma 3.1.18, this implies that the extension
k(I(x, 1/S(x, y)))/k is transcendental. As the transcendence degree of k(x) over k is 1,
this implies that the extension k(x)/k(I(x, 1/S(x, y))) is algebraic, hence x is algebraic
over kinv, with minimal polynomial P(x).

The group G leaves kinv fixed. Thus the orbit of x in K under the action of G is a
subset of the roots of P(x). By Theorem 3.1.12, the action of G is transitive on the orbit,
hence the set G · x = {u ∈ K : ∃σ ∈ G, u = σx} = {u ∈ K : ∃v ∈ K, (u, v) ∈ O}
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is finite. As there are degy K̃(x, y) pairs of the orbit with first coordinate u for each u in
G · x, we conclude that O is finite.

Example 3.2.4 (Hadamard models). Consider a Hadamard model (see the correspond-
ing section in 3.1.4) given by the polynomial

S(x, y) = P(x)Q(y) + R(x).

Then it is straightforward to see that the pair
(

t−1−R(x)
P(x) , Q(y)

)
is a pair of nontrivial Ga-

lois invariants. Hence the orbit of a Hadamard model is always finite by Theorem 3.2.3,
thus giving an alternative proof to the finiteness of the orbit. ■

Note that Theorem 3.2.3 implies that the extension k(O)/kinv is finite and Galois,
having Galois group G =

〈
Gx, Gy

〉
.

3.2.3 Effective construction

In order to apply the algebraic strategy presented in Section 2.2.2, we want to find
explicit nonconstant rational t-invariants. As already mentioned, we shall first con-
struct explicitly the field of Galois invariants and then search among these Galois in-
variants the potential rational t-invariants.

In the small steps case, an orbit sum argument was used to construct a pair of Galois
invariants [BBR21, Theorem 4.6]. This construction generalizes mutatis mutandis to the
large steps case, and is reproduced here to show one way to exploit the group of the
walk.

Lemma 3.2.5. Let ω be the 0-chain 1
|O| ∑a∈O a. Then, for any regular fraction H ∈ Q(x, y, t)

the element Hω is a Galois invariant.

Proof. Let H(x, y) be a regular fraction. Since, by Theorem 3.1.12, the group G acts
faithfully on O, the 0-chain ω is invariant by the action of G. Thus, by Lemma 3.1.19,
for all σ in G, σ (Hω) = Hσ·ω = Hω. Therefore, by the Galois correspondence, Hω is a
Galois invariant.

Unfortunately, a non-constant regular fraction H(x, y) might have a constant eval-
uation, that is, Hω might belong to k. Indeed, for the step polynomial S(x, y) = (x +
1
x )(y + 1

x ) and the regular fraction H(x, y) = xy, the element Hω = S(x, y) belongs
to k = Q(S(x, y)) but H(x,y) = xy is non-constant. Thus, one has to choose carefully
H(x, y) in order to avoid this situation which is precisely the strategy used in [BBR21,
Theorem 4.6]. Below, we describe an alternative construction which is easier to com-
pute effectively and yields a complete description of the field kinv.

Consider first this simple observation. Since x is algebraic over kinv, we can con-
sider its minimal polynomial µx(Z) in kinv[Z]. One of its coefficients must be in kinv \ k
because x is transcendental over k. Thus, such a coefficient is a non-trivial Galois in-
variant.

A more sophisticated argument using a constructive version of Lüroth’s Theorem
says actually much more about such a coefficient.

69



3. Galois structure on the orbit and invariants

Theorem 3.2.6 (Lüroth’s Theorem [Rot15], Th. 6.66). Let k(x) be a field with x transcen-
dental over k and k ⊂ L ⊂ k(x) a subfield. If x is algebraic over K, then any coefficient c of its
minimal polynomial µx(Z) over L that is not in k is such that L = k(c).

Applying this result to the tower k ⊂ kinv ⊂ k(x), not only can we find nontriv-
ial Galois invariants among the coefficients of µx, but any one of them generates the
field of Galois invariants. In one sense, these coefficients contain all the information on
the Galois invariants attached to the model. Therefore, all that remains is to compute
effectively the polynomial µx(Z).

By irreducibility of the polynomial µx(Z) in kinv[Z], the Galois group G = Gal(k(O)/kinv)
acts transitively on its roots. By Theorem 3.1.12, the orbit of x under the action of G is
the set of left coordinates of the orbit. Therefore, µx(Z) is precisely the vanishing poly-
nomial of the left coordinates of the orbit, which is exactly computed in the construction
of the orbit in [BBM21, Section 3.2]. We detail this construction in Section 4.5.2.

In order to find an explicit pair of non-constant Galois invariants (I(x), J(y)), we
compute µx(Z). Each of its coefficients lies in kinv and corresponds via Proposition 3.1.18
to a pair of Galois invariants: the non-constant coefficients of µx(Z) leading to non-
trivial Galois invariants. One can therefore lift µx(Z) either as a polynomial in C(x, t)[Z]
or as a polynomial in C(y, t)[Z]. The lifts of the polynomial µx(Z) to C(x, t)[Z] and to
C(y, t)[Z] can be computed directly when constructing the orbit, see 4.5.2, and their
difference is a multiple of K̃(x, y) by a polynomial in Z whose coefficients are regular
fractions.

Example 3.2.7 (Hadamard models). We saw in Example 3.2.4 that the field of Galois in-
variants of a Hadamard model is nontrivial. We may be more precise. For a Hadamard
model given by the polynomial S(x, y) = P(x)Q(y) + R(x), then kinv coincides with
k(Q(y)).

Indeed, writing Q(y) = A(y)/B(y) with A and B relatively prime, we know that
the right coordinates of the orbit are the roots of the polynomial

µy(Y) = B(Y)− A(Y)Q(y) ∈ k(Q(y))[Y] ⊂ kinv[y].

Thus, the coefficients of this polynomial generate the field of Galois invariants, imply-
ing that k(Q(y)) ⊂ kinv ⊂ k(Q(y)), which shows the claim. ■

Example 3.2.8 (The model Gλ). Consider the model Gλ. Its orbit type is O12. We com-
pute the lift of µx(Z) in C(x, t)[Z] as

Z6 −
(
λ2 x3 + x6 + x4 − x2 − 1

)
t2 + x2λ

(
x2 − 1

)
t − x3

t2x (x2 + 1)2 Z5 +
t + λ

t
Z4

− 2
x6t2 +

(
−λ2 t2

2 + 1
2

)
x5 + t (t + λ) x4 +

(
−t2 − λ t

)
x2 − (λ2 t2−1)x

2 − t2

t2x (x2 + 1)2 Z3

− (t + λ) Z2

t
−
(
λ2 x3 + x6 + x4 − x2 − 1

)
t2 + x2λ

(
x2 − 1

)
t − x3

t2x (x2 + 1)2 Z − 1

70



3. Galois structure on the orbit and invariants

and in C(y, t)[Z] as

Z6 +
−t y4 + λty + y3 + t

t y2 Z5 +
t + λ

t
Z4 − 2

(
y4 − 1

2 y2λ2 − yλ − 1
)

t2 − t y3 + y2

2
t2y2 Z3

− (t + λ)

t
Z2 +

(
−t y4 + λty + y3 + t

)
t y2 Z − 1.

The non-constant coefficients of µx(Z) are the coefficients a5,a3,a1 of Z5,Z3 and Z.
One sees easily that a5 = a1 and that 2a5 = a3 +

−λ2t2+1
t2 . The coefficient a5 yields the

following pair of non-trivial Galois invariants (I(x), J(y))(
−
(
λ2 x3 + x6 + x4 − x2 − 1

)
t2 + x2λ

(
x2 − 1

)
t − x3

t2x (x2 + 1)2 ,
−t y4 + λty + y3 + t

t y2

)
.

We check that I(x)−J(x)
K̃(x,y)

has poles of bounded order at 0, hence (I(x), J(y)) is a pair of

t-invariants. Moreover, Theorem 3.2.6 says that kinv = k (I(x, 1/S(x, y))), so any pair of
Galois invariants for Gλ is a fraction in the pair (I(x), J(y)). ■

Example 3.2.9. The orbit type of the model with step polynomial S(x, y) = x + x
y +

y
x2 +

1
x2 is O18 (see Figure 3.1.1). With our method, we find the following pair of Galois

invariants((
−x9 − 3x3 + 1

)
t2 +

(
x8 + x5 − 2x2) t + x4

x6t2 ,

(
y3 + 3y + 1

)
(y + 1)3 t3 + y4

y2t3 (y + 1)3

)
.

One can also check by looking at the t-expansions that it is a pair of t-invariants. ■
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Chapter 4

Decoupling with a finite group

In Section 2.2.2, a strategy for showing algebraicity of some models with small steps
has been presented, relying on the construction of invariants. Notably, writing

xy ≡ F(x) + G(y)

for some fractions F(x) and G(y) (a t-decoupling, see Definition 2.2.8) was crucial in
order to construct the pair of invariants involving the sections Q(x, 0) and Q(0, y). One
could imagine to perform the same proof for walks having a more general starting
point (a, b), which in turn would require to compute the t-decoupling of the fraction
xa+1yb+1. Hence, this justifies to study the problem of decoupling an arbitrary fraction
H(x, y).

For weighted models with small steps, this problem was well studied. The first
traces appear in [FIM99, Section 4]. When the classical group of the walk is finite (cor-
responding to the case where the orbit is cyclic), [FIM99, Theorem 4.2.9 and Theorem
4.2.10] give Galoisian conditions to guarantee the existence of rational solutions to the
equation (1.2.3). These conditions also appear in [BBR21] in the context of a finite for-
mal group of the walk. As seen in Section 2.2.2, the fact that a regular fraction H(x, y)
admits a decoupling is completely characterized by the fact that its alternating orbit
sum is zero, by [BBR21, Theorem 4.11]. Moreover, the same theorem yields that the
fractions F(x) and G(y) that satisfy H(x, y) = F(x) + G(y) mod K̃(x, y) can be explic-
itly computed in terms of H(x, y) also using an orbit sum.

In this chapter, we extend this criterion to the case of an arbitrary finite orbit using
the terminology of Chapter 3. Like we did in the previous chapter to study rational in-
variants, we give a notion of decoupling in the context of k(O), called Galois decoupling.
Then, using the interaction of the group with the orbit devised earlier, we give a neces-
sary and sufficient condition for the Galois decoupling of a regular fraction H(x, y), so
that it admits a Galois decoupling if and only if Hα = 0 for some 0-chain α of the orbit.
Moreover, the solutions F(x) and G(y) of the decoupling problem are also expressed as
explicit orbit sums of H(x, y), with F(x) = Hγ̃x and G(y) = Hγ̃y for some 0-chains γ̃x
and γ̃y. As in the cyclic case, the 0-chains α, γ̃x and γ̃y only depend on the orbit type.
We also address the problem of effective computations. We show in Section 4.5.1 that
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4. Decoupling with a finite group

under some mild assumptions on the orbit type, these orbit sums admit an expression
suitable for computer algebra. The construction is illustrated in Section 4.6 for some
finite orbit types.

4.1 Galois formulation of decoupling

As in the previous section, we adapt the notion of decoupling introduced in Sec-
tion 2.2.2 to our Galoisian framework. The definition below is the straightforward ana-
logue of Definition 4.7 in [BBR21] for large steps models.

Definition 4.1.1 (Galois decoupling of a regular fraction). Let H(x, y) be a regular frac-
tion in C(x, y, t). A pair of fractions (F(x), G(y)) in C(x, t) × C(y, t) is called a Galois
decoupling pair for the fraction H(x, y) if there exists a regular fraction R(x, y) satisfying

H(x, y) = F(x) + G(y) + K̃(x, y)R(x, y).

We call such an identity a Galois decoupling of the fraction H(x, y).

Thanks to Proposition 3.1.20, if a regular fraction admits a decoupling with respect
to the t-equivalence then it admits a Galois decoupling. Analogously to the notion of
Galois invariants and as a corollary of Proposition 3.1.18, one can interpret the Galois
decoupling as an identity in the extension k(O).

Proposition 4.1.2. Let H(x, y) be a regular fraction in C(x, y, t). Then H(x, y) admits a
Galois decoupling if and only if H(x,y) can be written as f + g with f in k(x) and g in k(y).

By an abuse of terminology, we call any identity H(x,y) = f + g with f in k(x) and
g in k(y) a Galois decoupling of H(x, y). Furthermore, these last two conditions can
be reformulated algebraically via the Galois correspondence applied to the extensions
k(O)/k(x) and k(O)/k(y): H(x,y) = f + g with f fixed by Gx and g fixed by Gy.

Given a regular fraction H(x, y), one could try to use the normal basis theorem (see
[Lan02, chapter 6, § 13]) to test the existence of a Galois decoupling for H(x, y). The
normal basis theorem states that there exists a kinv-basis of k(O) of the form (σ(α))σ∈G
for some α ∈ k(O). The action of Gx and Gy on this basis is given by permutation ma-
trices, and thus the linear constraints for the Galois decoupling of H(x,y) is equivalent to
a system of linear equations. Unfortunately the computation of a normal basis requires
a priori a complete knowledge of the Galois group G, whose computation is a difficult
problem (see 3.1.4). Therefore, we present in the remaining of the section a construction
of a Galois decoupling test which relies entirely on the orbit and its Galoisian structure.

4.2 The decoupling of (x, y) in the orbit

Definition 4.2.1. Let α be a 0-chain of the orbit. We say that α cancels decoupled fractions
if Hα = 0 for any regular fraction H(x, y) of C(x, t) + C(y, t).
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4. Decoupling with a finite group

(u1, v1) (u2, v2)

(u1, v2)

(u2, v3)

(u3, v3)

(u3, v1)

α = (u1, v2)− (u1, v1) + (u2, v3)− (u2, v2) + (u3, v1)− (u3, v3)

F(x)α = F(u1)− F(u1) + F(u2)− F(u2) + F(u3)− F(u3) = 0

G(y)α = G(v2)− G(v1) + G(v3)− G(v2) + G(v1)− G(v3) = 0

α

Figure 4.2.1 – The 0-chain induced by a bicolored cycle cancels decoupled fractions

We recall that a path in the graph of the orbit is a sequence of vertices (a1, a2, . . . , an+1)
such that ai ∼ ai+1 for all 0 ≤ i ≤ n. The length of (a1, a2, . . . , an+1) is the number of
adjacencies (that is n). A path is called a cycle * if an+1 = a1. A cycle is called simple if
only its first and last vertices are equal.

Example 4.2.2. A bicolored cycle is a cycle (a1, a2, . . . , a2n+1) of even length such that for
all i, a2i ∼x a2i−1 and a2i+1 ∼y a2i. One associates to (a1, a2, . . . , a2n+1) the 0-chain

α =
2n

∑
i=1

(−1)iai =
n

∑
i=1

(a2i − a2i−1) =
n

∑
i=1

(a2i − a2i+1).

Taking F(x, t) a fraction in C(x, t), one observes that for all i one has Fa2i − Fa2i−1 = 0,
as vertices a2i and a2i−1 share their first coordinate. Symmetrically, taking G(y, t) a
fraction in C(y, t), one has Ga2i+1 − Ga2i = 0. Therefore, Fα = Gα = 0. Hence, the 0-
chains induced by bicolored cycles cancel decoupled fractions. Figure 4.2.1 illustrates this
observation. ■

Example 4.2.2 is fundamental for picturing the 0-chains that cancel decoupled frac-
tions because of the following stronger result:

Proposition 4.2.3. A 0-chain cancels decoupled fractions if and only if it can be decomposed as
a C-linear † combination of 0-chains induced by bicolored cycles.

There exists an elementary graph theoretic proof of this fact. However, we choose
to postpone the proof of Proposition 4.2.3 after the proof of Theorem 4.4.10, which is an
algebraic reformulation of the condition for a 0-chain to cancel decoupled fractions.

Example 4.2.4. A straightforward application of this observation, is the following ob-
struction for the existence of a Galois decoupling of xy. Consider an orbit whose
graph contains a bicolored square (bicolored cycle of length 4), with associated 0-chain

*. The terminology “loop” of [Gib10, Definition 1.8] is unorthodox, so we write “cycle” instead.
†. Note that if the 0-chain is with integer coefficients, one can choose the combination with integer

coefficients as well.
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4. Decoupling with a finite group

α = (u1, v1)− (u1, v2) + (u2, v2)− (u2, v1) (thus with u1 ̸= u2 and v1 ̸= v2). The eval-
uation of xy on this 0-chain factors as (xy)α = (u1 − u2)(v1 − v2), which is always
nonzero.

Therefore, if the orbit of a model S contains a bicolored square, then xy never admits
a Galois decoupling and thus a decoupling in the sense of the t-equivalence. Thus,
we can conclude that for models with orbit Õ12 (see Figure 3.1.1) or Hadamard (see
Section 4.6.2), or the “Fan model” (see Appendix 4.6.3), the fraction xy never admits a
decoupling. ■

For now, we only saw that the canceling of a regular fraction on 0-chains that cancel
decoupled fraction gives a necessary condition for the Galois decoupling of this frac-
tion. We prove in this section that this condition is in fact sufficient and that one only
needs to consider the evaluation on a single 0-chain.

For small steps walks with finite orbit, there is only one bicolored cycle and thus
only one 0-chain α induced by the bicolored cycle. Theorem 4.11 in [BBR21] shows that
a regular fraction admits a Galois decoupling if and only its evaluation on α is zero.
More precisely, Bernardi, Bousquet-Mélou and Raschel proved an explicit identity in
the algebra of the group of the walk. Rephrasing their equality in terms of 0-chains in
the orbit, we introduce the notion of decoupling of the pair (x, y) in the orbit as follows:

Definition 4.2.5 (Decoupling of (x, y)). We say that (x, y) admits a decoupling in the orbit
if there exist 0-chains γ̃x, γ̃y, α such that

— (x, y) = γ̃x + γ̃y + α

— σx · γ̃x = γ̃x for all σx ∈ Gx

— σy · γ̃y = γ̃y for all σy ∈ Gy

— the 0-chain α cancels decoupled fractions

In that case, we call the identity (x, y) = γ̃x + γ̃y + α a decoupling of (x, y).

Note that if (γ̃x, γ̃y, α) is a decoupling of (x, y) then the 0-chain α is equal to (x, y)−
γ̃x − γ̃y. Hence, when giving such a decoupling, we will often state explicitly only γ̃x
and γ̃y.

Example 4.2.6. For the orbit of the model Gλ, a decoupling equation (x, y) = γ̃x + γ̃y + α
is given

by γ̃x =

(
1
2
((x, y) + (x, xy))− 1

8

(
(z, y) + (−xy2z, y) + (xy2z, xy) + (−z, xy)

)
+

1
8

(
(xy2z, yz) + (z, yz) + (−xy2z,−xyz) + (−z,−xyz)

))
and γ̃y =

(
1
4

(
(x, y) + (z, y) + (−xy2z, y)

)
− 1

4

(
(x, xy) + (z, yz) + (−xy2z,−xyz)

))
,

where α denotes 1
α . This decoupling is constructed in Subsection 4.6.4 and the 0-chain

α is represented in Figure 4.2.2. It is the sum of the two 0-chains α1 and α2 induced by
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(x, y1)

(x3, y1) (x4, y1)

(x, y)

(x1, y) (x2, y)

(x1, y2)
(x3, y2)

(x5, y2)

(x2, y3)

(x5, y3)

(x4, y3)

11

−1−1

1 1

0

−1

1

−1 −1

1

−1

0

α1 α2

Figure 4.2.2 – A 0-chain of O12 characterizing decoupled fractions for the model Gλ where the
weights are written in grey next to their corresponding vertex.

the two bicolored cycles where the weights of the 0-chains α1 and α2 are written in grey
next to their corresponding vertex. ■

The relation between the notion of decoupling of (x, y) in the orbit and the notion
of Galois decoupling is detailed in the following proposition.

Proposition 4.2.7. Assume that (x, y) = γ̃x + γ̃y + α is a decoupling of (x, y), and let H(x, y)
be a regular fraction. Then the following assertions are equivalent:

(1) H(x, y) admits a Galois decoupling
(2) Hα = 0
(3) H(x,y) = Hγ̃x + Hγ̃y is a Galois decoupling of H(x, y).

Proof. (3) ⇒ (1) is obvious.
(1) ⇒ (2): By definition of a Galois decoupling of (x, y), the 0-chain α cancels decou-

pled fractions.
(2) ⇒ (3): Evaluating H(x, y) on the decoupling of (x, y) yields the identity H(x,y) =

Hγ̃x + Hγ̃y . Moreover, since γ̃x (resp. γ̃y) is fixed by Gx (resp. Gy), then Lemma 3.1.19
and the Galois correspondence in the extensions k(O)/k(x) and k(O)/k(y) ensure that
Hγ̃x and Hγ̃y belong respectively to k(x) and k(y), hence Hγ̃x + Hγ̃y is a Galois decou-
pling of H(x, y).

Therefore, if we solve the decoupling problem of (x, y) in the orbit, we also solve
the Galois decoupling problem for regular fractions: an explicit decoupling of (x, y)
will grant us with a simple test to check whether a regular fraction admits a Galois
decoupling (some orbit sum is zero), and an effective way to construct the associated
Galois decoupling based on orbit sum computations. We now state the main result of
this section, whose proof will follow from Theorem 4.4.12.
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4. Decoupling with a finite group

Theorem 4.2.8 (Decoupling). If the orbit O is finite, then (x, y) always admits a decoupling
in the orbit with rational coefficients.

The remaining of this section is dedicated to the proof of Theorem 4.2.8 and to the
effective construction of the decoupling of (x, y) in the orbit.

4.3 Pseudo-decoupling

We define here a more flexible notion of decoupling in the orbit called pseudo-decoupling,
mainly used in the proof of the Theorem 4.2.8.

Definition 4.3.1 (Pseudo-decoupling). Let γx and γy be two 0-chains. We call the pair
(γx, γy) a pseudo-decoupling of (x, y) if for every regular fraction H(x, y) that admits a
Galois decoupling, the equation H(x,y) = Hγx + Hγy is a Galois decoupling of H(x, y),
that is, Hγx ∈ k(x) and Hγy ∈ k(y).

For instance, if (x, y) = γ̃x + γ̃y + α is a decoupling of (x, y), then the pair (γ̃x, γ̃y)
is a pseudo-decoupling of (x, y) by Proposition 4.2.7.

Theorem 4.3.2 below shows how a pseudo-decoupling yields a decoupling. First let
us give some notation. Let G′ be a subgroup of G. We denote by [G′] the formal sum

1
|G′| ∑σ∈G′ σ. From a Galois theoretic point of view, if G′ is the Galois group of some
subextension k(O)/M, then [G′] is the trace of the field extension k(O)/M.

Theorem 4.3.2. If a pair (γx, γy) is a pseudo-decoupling of (x, y), then (x, y) admits a decou-
pling (x, y) = γ̃x + γ̃y + α where γ̃x = [Gx] · γx and γ̃y = [Gy] · γy.

Proof. By construction, the 0-chains γ̃x and γ̃y are fixed under the respective actions of
Gx and Gy. Therefore, we only need to prove that α cancels decoupled fractions, for
which purpose we rewrite it as the sum of three terms

α = ((x, y)− γx − γy) + (γx − [Gx] · γx) + (γy − [Gy] · γy).

Let H(x, y) be a regular fraction that admits a Galois decoupling. Then

— H(x,y) − Hγx − Hγy = 0 by definition of the pseudo-decoupling (γx, γy).

— For σx in Gx, we compute Hγx−σx ·γx = Hγx − σx(Hγx) thanks to Lemma 3.1.19. As
Hγx is in k(x), it turns out that Hγx−σx ·γx is zero.
Since 1

|Gx | ∑σx∈Gx
(γx − σx · γx) = γx − [Gx] · γx, we obtain that γx − [Gx] · γx can-

cels the fraction H(x, y).

The argument for γy − [Gy] · γy is similar. Thus Hα = 0, which concludes the proof.

We finish this subsection with two important lemmas.

Lemma 4.3.3. If the pair (γx, γy) is a pseudo-decoupling of (x, y), and α and α′ are 0-chains
that cancel decoupled fractions, then (γx + α, γy + α′) is also a pseudo-decoupling of (x, y).
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Proof. Let H(x, y) be a regular fraction that admits a Galois decoupling. By definition
of α and α′, we have Hα = Hα′ = 0, which by linearity proves that Hγx+α = Hγx and
Hγy+α′ = Hγy .

Since (γx, γy) is a pseudo-decoupling of (x, y), the equation

H(x,y) = Hγx + Hγy = Hγx+α + Hγx+α′

is a Galois decoupling of H(x, y) proving that (γx + α, γy + α′) is also a pseudo-decoupling
of (x, y).

Lemma 4.3.4. If two 0-chains γx and γy satisfy the following conditions
— (x, y) = γx + γy

— for all σx ∈ Gx, the 0-chain σx · γx − γx cancels decoupled fractions
— for all σy ∈ Gy, the 0-chain σy · γy − γy cancels decoupled fractions

then (γx, γy) is a pseudo-decoupling of (x, y).

Proof. Let H(x, y) be a regular fraction which admits a Galois decoupling. As H(x,y) =
Hγx + Hγy from the first point, one only needs to show that Hγx is in k(x) and that
Hγy is in k(y). Let σx be in Gx, then σx(Hγx) = Hσx ·γx = H(σx ·γx−γx)+γx = Hγx because
(σx · γx − γx) cancels decoupled fractions. Therefore, the Galois correspondence proves
that Hγx is in k(x). The same argument proves that Hγy is in k(y).

4.4 Graph homology and construction of the decoupling

Our construction of a decoupling relies on the graph structure of the orbit O, and in
particular on the formalism of graph homology.

4.4.1 Basic graph homology

We recall here the basic definitions of graph homology and the properties that will
be used in the construction of the decoupling (see [Gib10] for a comprehensive intro-
duction to graph homology).

Definition 4.4.1. A graph (undirected) is a pair Γ = (V, E) where V is the set of vertices
and E ⊂ {{a, a′} : a, a′ ∈ V, a ̸= a′} is the set of edges. A subgraph of Γ is a graph
Γ′ = (V ′, E′) such that V ′ ⊂ V and E′ ⊂ E.

An oriented graph is a pair Γ = (V, E+) where V is the set of vertices and E+ ⊂
{(a, a′) : a, a′ ∈ V, a ̸= a′} the set of arcs (oriented edges) such that if (a, a′) ∈ E+ then
(a′, a) /∈ E+. An orientation of a graph Γ = (V, E) is an oriented graph Γ′ = (V, E+)
such that the map E+ → E which maps (a, a′) to {a, a′} is a bijection.

Note that every graph can be given an orientation by freely choosing an origin for
each edge. Conversely, given an oriented graph Γ = (V, E+), one can consider the as-
sociated undirected graph (V, E) where E = {{a, a′} such that (a, a′) ∈ E+ or (a′, a) ∈
E+}. In what follows, the notions of graph homomorphism, path, connected compo-
nents concern the structure of undirected graph.
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Example 4.4.2. The graphs considered here are the graph induced by the orbit (O,∼)
still denoted O, and the two subgraphs of the orbit restricted to each individual type of
adjacency, which are Ox = (O,∼x) and Oy = (O,∼y). ■

We now introduce the chain complex attached to an oriented graph.

Definition 4.4.3. Let Γ = (V, E+) be an oriented graph and K a field. Such a graph in-
duces a chain complex C∗(Γ) defined as follows. The space C0(Γ) of 0-chains of Γ is the
free K-vector space spanned by the vertices of V. Similarly, the space C1(Γ) of 1-chains
of Γ is the free K-vector space spanned by the arcs of E+. The boundary homomorphism is
then the K-linear map ∂ defined by

∂ : C1(Γ) −→ C0(Γ)
(a, a′) ∈ E+ 7−→ a′ − a

As the reader notices, the chain complex has only been defined for an oriented
graph. Nonetheless, if (V, E+

1 ) and (V, E+
2 ) are two orientations of a graph Γ, it is easy

to see that the associated chain complexes are isomorphic [Gib10, 1.21 (3)]. When the
context is clear, we shall abuse notation and define a chain complex C∗(Γ) of a graph Γ
as the chain complex of the oriented graph (V, E+) where E+ is an arbitrary orientation
of Γ.

We make the following convention. Let a and a′ be two adjacent vertices of Γ. Given
an orientation E+ of Γ, we abuse notation and denote by (a, a′) the 1-chain

(a, a′) =
{

(a, a′) if (a, a′) is in E+

−(a′, a) otherwise
.

This notation is extremely convenient, because for two adjacent vertices of Γ, the bound-
ary homomorphism always satisfies ∂((a, a′)) = a′ − a and (a, a′) = −(a′, a).

Definition 4.4.4. Let Γ = (V, E+) be an oriented graph. A 1-chain c which satisfies
∂(c) = 0 is called a 1-cycle.

Example 4.4.5 (1-chain induced by a path). Let Γ = (V, E) be a graph and let (a1, a2, . . . , an+1)
be a path in Γ, that is, a sequence of vertices such that ai is adjacent to ai+1 for i =
1, . . . , n.

Given an arbitrary orientation E+ of Γ, we define the 1-chain p = ∑n
i=1(ai, ai+1), and

we call it the 1-chain induced by the path (a1, a2, . . . , an+1).
By telescoping, ∂(p) = an+1 − a1, therefore if the path is a cycle of Γ then p is a

1-cycle, hence the name. Every 1-cycle is a linear combination of 1-cycles induced by
the simple cycles of the graph [Gib10, Theorem 1.20]). ■

We recall that a graph is called connected if any two vertices are joined by a path.
The reader should note that the notion of path does not take into account a potential
orientation of the edges.
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Every finite graph is the disjoint union of finitely many connected components
which are maximal connected subgraphs. Any orientation of a graph induces by re-
striction an orientation on its subgraphs and thus on its connected components.

With this convention, it turns out that the chain complex of a finite oriented graph
is isomorphic to the direct sum of the chain complexes of its connected components.
Hence, it is harmless to extend Theorem 1.23 in [Gib10] to the case of a non-connected
graph.

Proposition 4.4.6. Let Γ = (V, E) be a graph, and let (Γi = (Vi, Ei))i=1,...,r be its connected
components. Define the augmentation map

ε : C0(Γ) −→ Kr

∑
a∈V

λa a 7−→
(

∑
a∈Vi

λa

)
i=1,...,r

.

Then, Ker ε = Im ∂.

Let Γ = (V, E) be a graph and let σ be a graph endomorphism of Γ. Fixing an
orientation E+ on Γ, we let σ act on the space of 0 and 1-chains by K-linearity via:

σ · a = σ(a) for any a in V and σ · (a, a′) = (σ(a), σ(a′)) for any (a, a′) in E+.

The reader should note that the action on the space of 1-chains uses the convention on
the arc notation introduced at the beginning of this subsection. It is easily seen that the
action of a graph endomorphism of Γ is compatible with the boundary homomorphism
of the chain complex C∗(Γ).

Proposition 4.4.7. Let Γ = (V, E) be a graph and σ be a graph endomorphism of Γ. Then σ
induces a chain map on C∗(Γ), which means that the following diagram of K-linear maps is
commutative.

C1(Γ) C0(Γ)

C1(Γ) C0(Γ)

∂

σ σ

∂

4.4.2 The chain complex of the orbit

We now apply the homological formalism to the graphs associated with the orbit O
with base field C (see Example 4.4.2). We fix once for all an orientation on O which in-
duces an orientation on the subgraphs Ox and Oy. Quoting [Gib10, Remark 1.21], “the
choice of this orientation is just a technical device introduced to enable the computation
of the boundary homomorphisms”.

We denote by ∂ (resp. ∂x, ∂y) the boundary homomorphism on the connected graph
O (resp. the non-connected graphs Ox, Oy). Moreover, we denote by ε (resp. εx, εy) the
augmentation map defined in Proposition 4.4.6 for O (resp. Ox, Oy).
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4. Decoupling with a finite group

Lemma 4.4.8. The C-vector space C1(O) is equal to C1(Ox) ⊕ C1(Oy) and the boundary
homomorphism ∂ coincides with ∂x + ∂y where one has extended ∂x (resp. ∂y) by zero on C1(Oy)
(resp. C1(Ox)).

Proof. Every edge {a, a′} of O is either an x-adjacency or a y-adjacency, and not both.
Therefore, the set of arcs of an orientation of O is the disjoint union of the arcs of the
orientations of Ox and Oy, which thus induces a direct sum decomposition on the free
vector space C1(O). The decomposition of the homomorphism ∂ follows directly.

The action of the Galois group G on the vertices of O preserves the adjacency types
of the edges (see Lemma 3.1.5). Therefore G acts by graph automorphisms on Ox

and Oy. Thus, Proposition 4.4.7 allows us to define the action of G on the chains of Ox

and Oy in a compatible way with the decomposition of Lemma 4.4.8.

Proposition 4.4.9. Let σ be in G. Then σ induces automorphisms of the chain complexes C∗(O), C∗(Ox)
and C∗(Oy) such that σ ◦ ∂x = ∂x ◦ σ and σ ◦ ∂y = ∂y ◦ σ.

The boundary homomorphisms ∂x and ∂y allow us to rewrite the 0-chains induced
by bicolored cycles as boundaries. If α is the 0-chain associated to a bicolored cycle as
in Example 4.2.2, then it is easily seen that α = ∂x(p) = ∂y(−p) with p the 1-chain as
in Example 4.4.5. The homology formalism generalizes the above description to any
0-chain that cancels decoupled fractions.

Theorem 4.4.10. Let α be a 0-chain. Then the following statements are equivalent:
(1) α cancels decoupled fractions.
(2) εx(α) = 0 and εy(α) = 0.
(3) There exists a 1-cycle c of O such that α = ∂x(c).

(3’) There exists a 1-cycle c of O such that α = ∂y(c).

Proof. (1) ⇒ (2): Let α be a 0-chain that cancels decoupled fractions. The connected com-
ponents of the graph Ox are of the form Ox

u = {(u′, v′) ∈ O : u′ = u} for the distinct
left coordinates u of O. We denote by U the set of distinct left coordinates. Therefore,
we decompose α = ∑u∈U αu where αu = ∑v′ λu

v′ (u, v′) is a 0-chain with vertices in Ox
u.

Now, we consider the family of monomials (xi)i which are obviously decoupled. Since
α cancels decoupled fractions, the following holds for all i:

0 = (xi)α = ∑
u
(xi)αu = ∑

u
∑

v′ / (u,v′)∈Ox
u

λu
v′(xi)(u,v′) = ∑

u

(
∑

v′ / (u,v′)∈Ox
u

λu
v′

)
ui = ∑

u
εx(α)uui.

The vector (ϵx(α)u)u∈U lies therefore in the kernel of the Vandermonde matrix (ui)i<|U|,u∈U .
Since the elements of U are distinct, this matrix is invertible and the ϵx(α)u are all equal
to 0. Thus, εx(α) = 0. The same argument yields εy(α) = 0.

(2) ⇒ (3) and (3’): Assume that εx(α) = 0 and εy(α) = 0. By Proposition 4.4.6, there
exist cx in C1(Ox) and cy in C1(Oy) such that ∂x(cx) = α and ∂y(cy) = α. Moreover,

∂(cx − cy) = ∂(cx)− ∂(cy) = ∂x(cx)− ∂y(cy) = α − α = 0.
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4. Decoupling with a finite group

Therefore, c = cx − cy is a 1-cycle of O which satisfies ∂x(c) = α and ∂y(−c) = α.
(3) ⇔ (3’): Let c be a 1-cycle of O, then ∂x(c) = ∂(c)− ∂y(c) = ∂y(−c). This proves

the equivalence.
(3) ⇒ (1): Assume that α = ∂x(c) = ∂y(−c) for c a cycle of O. Now, let e =

((u, v), (u, v′)) be an arc of Ox and take F(x) ∈ C(x, t). Then

F∂x(e) = F(u, 1/S(x, y))− F(u, 1/S(x, y)) = 0.

Therefore, by C-linearity, this implies that Fα = F∂x(c) = 0. Symmetrically, if G(y) ∈
C(y, t), then we deduce that Gα = G∂y(−c) = 0, which concludes the proof.

We now apply this pleasant characterization to prove our earlier claim that 0-chains
that cancel decoupled fractions are induced by C-linear combinations of 1-cycles in-
duced by bicolored cycles.

Proof of Proposition 4.2.3. Let α be a 0-chain which cancels decoupled fractions, then by
(3) of Theorem 4.4.10, we can write it α = ∂x(c) = −∂y(c) with c a 1-cycle of O. Since
the 1-cycles induced by the simple cycles of O generate the 1-cycles of O (see [Gib10,
Theorem 1.20]), we can assume without loss of generality that c is induced by a simple
cycle p = (a1, a2, . . . , an) of O.

Moreover, if consecutive arcs ei, . . . , ei+k−1 = (ai, ai+1), (ai+1, ai+2), . . . , (ai+k−1, ai+k)
of p are of the same adjacency type (say x), then since the monochromatic components
of O are cliques, (ai, ai+k) is an arc of O. Therefore,

∂x(ei + · · ·+ ei+k−1) = ∂x(ei + · · ·+ ei+k−1 + (ai+k, ai)) + ∂x((ai, ai+k)),

the first term being zero because it is the boundary of a monochromatic cycle.
The exact same reasoning can be done for consecutive y-adjacencies. Thus, replac-

ing consecutive arcs of the same adjacency type by one single arc of the same adjacency
type, we can assume without loss of generality that c is the 1-chain induced by a simple
bicolored cycle. This proves that α is the 0-chain induced by a bicolored cycle, finishing
the proof.

4.4.3 Construction of the decoupling

We now use the results of the previous subsections to construct a pseudo-decoupling
of (x, y) on a finite orbit O. For p = (pa)a∈O a family of 1-chains, we consider the 0-
chains

γx(p) = − 1
|O| ∑

a
∂y(pa) and γy(p) = − 1

|O| ∑
a

∂x(pa)

where all sums run over O. The C-linearity of the boundary homomorphisms implies
that γx and γy are C-linear.

We recall that ω is the 0-chain 1
|O| ∑a∈O a defined in Lemma 3.2.5.

Lemma 4.4.11. Let (ca)a∈O be a family of 1-chains. Then the following assertions hold.
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4. Decoupling with a finite group

1. If ∂(ca) = 0 for all a, then the two 0-chains γx(c) and γy(c) cancel decoupled fractions.

2. If ca ∈ C1(Ox) for all a, then γx(c) = 0. Likewise, if ca ∈ C1(Oy) for all a, then
γy(c) = 0.

Proof. We prove the first point. Assume that ∂(ca) = 0 for all a, then by Theorem 4.4.10
the 0-chains ∂x(ca) and ∂y(ca) cancel decoupled fractions for all a. Hence, by linearity,
so do γx(c) and γy(c). We prove the second point. Assume that ca ∈ C1(Ox) for all
a, then ∂y(ca) = 0 for all a. Thus, γx(c) = 0 by linearity. The case ca ∈ C1(Oy) is
symmetric.

Theorem 4.4.12 (Decoupling theorem). Let px = (px
a)a∈O and py = (py

a)a∈O be two fami-
lies of 1-chains, that are such that, for all a ∈ O, one has

εx(∂(px
a) + (x, y)− a) = 0 and εy(∂(py

a) + (x, y)− a) = 0. (4.4.1)

Then, the pair (ω + γx(px), γy(py)) is a pseudo-decoupling of (x, y).

Proof. Let us first consider a pair (px, py) of families of 1-chains such that px = py

and ∂(px
a) + (x, y) − a = 0 for all a in O. In order to prove that (ω + γx(px), γy(py))

is a pseudo-decoupling, we will show that this pair satisfies the three conditions of
Lemma 4.3.4.

The first condition comes down to showing that (x, y) = ω + γx(px) + γy(py). By
construction, we have that

a − (x, y) = ∂(px
a) = ∂y(px

a) + ∂x(px
a),

for all a in O. Summing this identity over the orbit yields

∑
a∈O

a − |O| · (x, y) = ∑
a∈O

∂y(px
a) + ∑

a∈O
∂x(px

a) = ∑
a∈O

∂y(px
a) + ∑

a∈O
∂x(py

a),

which can be rewritten as (x, y) = (ω + γx(px)) + γy(py).
For the second condition, we need to prove that σx · (ω + γx(px))− (ω + γx(px))

cancels decoupled fractions for every σx in Gx. The compatibility of G with the bound-
ary homomorphisms (Proposition 4.4.9) yields

σx · γx(px) = − 1
|O| ∑

a∈O
∂y(σx · px

a)

= − 1
|O| ∑

a∈O
∂y(px

σx ·a)−
1
|O| ∑

a∈O
∂y(σx · px

a − px
σx ·a).

The homomorphism σx induces a bijection on the vertices of O, so the first sum on the
right hand-side is equal to γx(px). Hence, we find

σx · γx(px)− γx(px) = − 1
|O| ∑

a∈O
∂y(σx · px

a − px
σx ·a).
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Moreover, since σx fixes x ∈ k(O), we have σx · (x, y) = (x, v) for some v. Thus, the arc
c =: ((x, y), (x, v)) ∈ C1(Ox) satisfies ∂(c) = σx · (x, y)− (x, y) and ∂y(c) = 0. Hence,
we may rewrite the above equation into

σx · γx(px)− γx(px) = − 1
|O| ∑

a∈O
∂y(σx · px

a − px
σx ·a + c). (4.4.2)

By assumption on px, we have ∂(px
a) = a − (x, y) for all a in O. The compatibility of Gx

with the boundary homomorphism yields for all a ∈ O that

∂(σx · px
a − px

σx ·a + c) = σx(∂(px
a))− ∂(px

σx ·a) + ∂(c)
= σx · (a − (x, y))− (σx · a − (x, y)) + (σx · (x, y)− (x, y)) = 0.

Therefore, the 1-chain σx · qa − qσx ·a + c is a 1-cycle for all a, so, by Theorem 4.4.10,
the 0-chain ∂y(σx · px

a − px
σx ·a + c) cancels decoupled fractions. By linearity, we conclude

from (4.4.2) that σx · γx(px)− γx(px) cancels decoupled fractions. Finally, as ω is fixed
by σx, we deduce that σx · (ω + γx(px)) − (ω + γx(px)) = σx · γx(px) − γx(px) can-
cels decoupled fractions. The proof that (ω + px, py) satisfies the third condition of
Lemma 4.3.4 is completely analogous to the proof for the second condition.

Let us now prove the general case by showing that one can always reduce to the
situation above. Let (px

a)a∈O and (py
a)a∈O be two families of 1-chains that satisfy (4.4.1).

From Proposition 4.4.6 applied to the graphs Γ = Ox and Γ = Oy, we see that (4.4.1)
is equivalent to the existence of two families of 1-chains δx = (δx

a )a∈O and δy = (δ
y
a )a∈O

with δx
a in C1(Ox) and δ

y
a in C1(Oy) such that for all a ∈ O one has

∂(px
a − δx

a ) = a − (x, y) and ∂(py
a − δ

y
a ) = a − (x, y). (4.4.3)

Define a family of 1-chains qx = (qx
a)a∈O by qx

a =: px
a − δx

a . By construction, ∂(qx
a) = a −

(x, y). The first part of the proof shows that the pair (ω + γx(qx), γy(qx)) is a pseudo-
decoupling. Lemma 4.4.11 (2) yields γx(px) = γx(qx) and γy(py) = γy(py − δy). More-
over, (4.4.3) implies that

∂((py
a − δ

y
a )− qx

a) = ∂((py
a − δ

y
a )− (px

a − δx
a )) = a − (x, y)− (a − (x, y)) = 0,

for all a ∈ O. By Lemma 4.4.11 (1), we obtain that γy(py)− γy(qx) = γy((py − δy)− qx)
cancels decoupled fractions.

Thus, the pairs of 0-chains (ω + γx(px), γy(py)) and (ω + γx(qx), γy(qx)) differ by
0-chains that cancel decoupled fractions. Lemma 4.3.3 concludes the proof.

We can now prove the existence of a decoupling of (x, y) for any finite orbit.

Proof of Theorem 4.2.8. The graph O is connected. Hence, for every a ∈ O, there exists
a path from (x, y) to a. Denoting by px

a = py
a the associated 1-chain, we have ∂(px

a) =
a − (x, y) (see Example 4.4.5).

Therefore, the families (px
a)a∈O and (py

a)a∈O satisfy the assumptions of Theorem 4.4.12
leading to the existence of a pseudo-decoupling. Theorem 4.3.2 establishes the ex-
istence of a decoupling obtained from a pseudo-decoupling concluding the proof of
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4. Decoupling with a finite group

Theorem 4.2.8: if the orbit is finite, the pair (x, y) always admits a decoupling in the
orbit.

The reader may have noticed that we used in the proof of Theorem 4.2.8 two fam-
ilies of 1-chains px, py that satisfy a stronger assumption than (4.4.1). The idea beyond
the assumption (4.4.1) is that it offers more flexibility in the choice of the families of
1-chains px, py. Such flexibility is required in Theorem 4.5.8. Indeed, there is a precise
choice of the families of 1-chains that produces a pseudo-decoupling on which the eval-
uation of regular fractions is more efficient.

In [BEFHR25, Definition 6.1], the authors introduce the notion of a multiplicative
decoupling of a regular fraction. In our context, we say that a regular fraction H(x, y)
has a multiplicative Galois decoupling if and only if there exists a positive integer m
such that

H(x, y)m = F(x)G(y) + K̃(x, y)P(x, y),

for some rational fractions F(x), G(y) and a regular fraction P(x, y).
Theorem 4.2.8 yields a decoupling of (x, y) with 0-chains γ̃x, γ̃y and α having ratio-

nal coefficients. Let d be the common denominator of the rational coefficients of γ̃x, γ̃y
and α which is easily seen to divide the size of the orbit in the proof of Theorem 4.4.12
when the input 1-chains in px and py all have integer coefficients. Then, the 0-chains
dγ̃x, dγ̃y, dα have integer coefficients.

For such chains, one can define a multiplicative evaluation. For a 0-chain c =

∑u,v cu,v(u, v) with integer coefficients, define

Hmul
c = ∏

u,v
H(u, v, 1/S(x, y))cu,v .

As a direct corollary of the existence of a decoupling in the orbit, the following
lemma gives an explicit procedure to test and construct, when it exists, the multiplica-
tive Galois decoupling of a regular fraction H(x, y).

Lemma 4.4.13. The following statements are equivalent:

— H(x, y) has a multiplicative Galois decoupling.

— There exists a positive integer m such that
(

Hmul
dα

)m
= 1.

Proof. By definition, and from Proposition 3.1.18, the regular fraction H(x, y) admits a
multiplicative Galois decoupling if and only if there exist a positive integer m, f (x) ∈
k(x) and g(y) ∈ k(y) such that Hm

(x,y) = f (x)g(y).
Let us assume that H(x, y) admits a multiplicative Galois decoupling and let m be

a positive integer such that H(x, y)m = F(x)G(y) + K(x, y)P(x, y) for some fractions
F(x), G(x) in C(x, t) and a regular fraction P(x, y) ∈ C(x, y, t).

By multiplicative evaluation of the previous identity on dα, we find that(
Hmul

dα

)m
=
(

F(x)mul
dα

)m(
G(y)mul

dα

)m
.
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It is clear that dα is a 0-chain with integer coefficients that cancels decoupled frac-
tions. By Proposition 4.2.3, the chain dα is a Z-linear combination of 0-chains induced
by bicolored cycles. One proves easily by a multiplicative analogue of Example 4.2.2
that if β is a 0-chain induced by a bicolored cycle then F(x)mul

β = G(y)mul
β = 1 which

concludes the proof of the first implication.
Conversely, if there exists a positive integer m such that

(
Hmul

dα

)m
= 1, the decou-

pling d · (x, y) = dγ̃x + dγ̃y + dα yields by multiplicative evaluation(
Hmul

d(x,y)

)m
= H(x,y)

dm =
(

Hmul
dγ̃x

)m(
Hmul

dγ̃y

)m
.

By definition of the decoupling of (x, y) = γ̃x + γ̃y + α, we find that σ · ∂γ̃x = dσ · γ̃x =

dγ̃x for all σ ∈ Gx. A multiplicative analogue of Lemma 3.1.19 implies easily that Hmul
dγ̃x

is left fixed by Gx so that Hmul
dγ̃x

belongs to k(x). A similar argument shows that Hmul
dγ̃y

belongs to k(y) which concludes the proof.

4.5 Effective construction

4.5.1 Decoupling with level lines

The evaluation of a regular fraction at a vertex of the orbit, that is, at a pair of al-
gebraic elements in K might be difficult from an algorithmic point of view since this
requires to compute in an algebraic extension of Q(x, y). This is however the cost we
may have to pay in our decoupling procedure if we choose random families of 1-chains
satisfying the assumptions of Theorem 4.4.12.

In this section, we show how, under mild assumption on the distance transitivity of
the graph of the orbit, one can construct a decoupling in the orbit expressed in terms of
specific 0-chains that we call level lines.

These level lines regroup vertices of the orbit that satisfy the same polynomial rela-
tions. Therefore, one can use symmetric functions and efficient methods from computer
algebra to evaluate regular fractions on these level lines (see Appendix 4.5.2).

Definition 4.5.1. Let a be a vertex of O. We define the x-distance of a to be

dx(a) = inf{d(a, a′) : a′ ∼x (x, y)},

that is, the length of a shortest path in O from a to the clique (x, ·).
Such a shortest path (g0, g1, . . . , gr), that is, gr = a, g0 ∼x (x, y) and dx(a) = r, is

called an x-geodesic for a. Note that we have dx(gi) = i for all i = 0, . . . , r. We denote by
P x

a the set of 1-chains associated with x-geodesics for a as in Example 4.4.5.
The x-level lines X0,X1, . . . are defined by Xi = {a ∈ O : dx(a) = i}, and we

associate to the level line Xi the 0-chain Xi = ∑a∈X i a. Analogously, we define the y-
distance dy, the set Py

a of y-geodesics for a, the y-level lines Y0,Y1, . . . , and denote by Yi
the 0-chain associated with the y-level line Yi.
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(x, y1)
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Figure 4.5.1 – The level lines for the orbit O12

The level lines can be represented graphically, as in Figure 4.5.1, in the examples
of Section 4.6. The level lines and geodesics are our key tools to construct relevant
collections of 1-chains satisfying the conditions of Theorem 4.4.12. First, the boundaries
of a geodesic are easy to express.

Lemma 4.5.2. Let a be a vertex of O and (g0, g1, . . . , gr) an x-geodesic for a, then gi ∼y gi−1
if and only if i is odd. Similarly, for (g0, g1, . . . , gr) a y-geodesic for a, then gi ∼x gi−1 if and
only if i is odd.

Proof. Let g = (g0, g1, . . . , gr) be an x-geodesic of length r. Assume that there exists
i such that gi ∼x gi+1 ∼x gi+2. By transitivity of ∼x, this implies that gi ∼x gi+2,
contradicting the minimality of the geodesic g. Similarly, if there exists i such that
gi ∼y gi+1 ∼y gi+2 then gi ∼y gi+2, also contradicting the minimality of the geodesic.

Therefore, the adjacency types of the edges of the geodesic alternate. Finally, if g0 ∼x

g1, then this also contradicts the minimality of the geodesic because then (x, y) ∼x g1.
This fixes the starting parity of the alternating adjacency types of edges of the geodesic,
and thus gi ∼y gi−1 if and only if i is odd. The case of a y-geodesic is symmetric.

Corollary 4.5.3. Let a be a vertex of O, (g0, g1, . . . , gr) an x-geodesic for a and g its associated
1-chain, then ∂y(g) = ∑

1≤i≤r
i odd

gi − gi−1. Analogously, for (g0, g1, . . . , gr) a y-geodesic for a then

∂x(g) = ∑
1≤i≤r
i odd

gi − gi−1.

Recall from Section 4.4.1 that any graph automorphism τ of O acts on the vertex a
of O coordinate-wise and that we denote this action τ · a. We extend the action of τ to
any path (a1, . . . , an+1) as follows

τ · (a1, . . . , an+1) = (τ · a1, . . . , τ · an+1).
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Note that this action is compatible with the action of graph automorphisms on 1-chains
defined in Section 4.4.1. Indeed, if p is the 1-chain associated with the path (a1, . . . , an+1)
as in Example 4.4.5 then τ · p is the 1-chain associated with the path τ · (a1, . . . , an+1).

The following lemma shows that the geodesics and level lines satisfy some stability
properties with respect to the action of elements of Gx and Gy viewed as subgroups of
the group of graph automorphisms of O.

Lemma 4.5.4. Let σx be in Gx and a in O. Then dx(σx · a) = dx(a). Moreover, if (g0, . . . , gr)
is an x-geodesic for a, then σx · (g0, . . . , gr) is an x-geodesic for σx · a. Analogously, if σy is
in Gy and a in O, then dy(σy · a) = dy(a), and if (g0, . . . , gr) is a y-geodesic for a, so is
σy · (g0, . . . , gr) for σy · a.

Proof. Assume that dx(a) = r. Then there exists an x-geodesic for a that is (g0, g1, . . . , gr)
with gr = a. Apply the graph automorphism σx to each of the vertices of this path. Then
(σx · g0, σx · g1, . . . , σx · gr) with σx · gr = σx · a is a path of the orbit. By definition, g0 ∼x

(x, y), thus σx · g0 ∼x (x, y) since x is fixed by Gx. Therefore, dx(σx · a) ≤ r = dx(a).
Since σx is an automorphism, we conclude that dx(σx · a) = dx(a). We finally deduce
that σx · (g0, . . . , gr) is an x-geodesic for σx · a.

This observation leads us to define two subgroups of automorphisms of the graph O.
We denote by Autx(O) (resp. Auty(O)) the subgroup of graph automorphisms of O
that preserve the x (resp. y)-distance and the adjacency types ‡. By definition, any ele-
ment τ in Autx(O) maps an x-geodesic for a onto an x-geodesic for τ · a. Moreover, a
graph automorphism preserves the x-distance if and only if it induces a bijective map
from Xi to itself for each i. Analogous results hold for Auty(O).

Lemma 4.5.4 implies that Gx (resp. Gy) is isomorphic to a subgroup of Autx(O)
(resp. Auty(O)). The benefit of the groups Autx(O) and Auty(O) is that, unlike Gx
and Gy, they only depend on the graph structure of the orbit, and thus are more easily
computable. Note however that not all such graph automorphisms come from a Galois
automorphism (see for instance the Hadamard example in Section 4.6.2). We now state
an assumption on the distance transitivity of the graph of the orbit.

Assumption 4.5.5. Let a and a′ be two pairs of O. If dx(a) = dx(a′), then there exists σx in
Autx(O) such that σx · a = a′. Similarly, if dy(a) = dy(a′), then there exists σy in Auty(O)
such that σy(a) = a′. In other words, Autx(O) (resp. Auty(O)) acts transitively on Xi (resp.
Yi) for all i.

This assumption has been checked for all the finite orbit types appearing for models
with steps in {−1, 0, 1, 2}2 as well as for Hadamard and Fan-models (see the examples
in 4.6). To prove that Assumption 4.5.5 is satisfied in practice, we only need to find a
subgroup of Autx(O) that acts transitively on the orbit. This does not require to com-
pute the full group of graph automorphisms which might be quite hard in general.
However, Assumption 4.5.5 does not always hold as illustrated in the following exam-
ple.

‡. One can show that this last condition is redundant with the condition on the distance preservation.
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4. Decoupling with a finite group

Example 4.5.6. Consider the weighted model described by the Laurent polynomial

S(x, y) =
(

x + 1
x + y + 1

y

)2
. The kernel polynomial K̃(x, y) is an irreducible polyno-

mial of degree 4 in x and in y. Therefore, the cardinal of Y0 is 4 and the only right
coordinate of the elements in Y0 is y.

Moreover, each element of Y0 is x-adjacent to three distinct elements in Y1 so the
cardinality of Y1 is 12. Now, it is easily seen that the right coordinates of vertices in
Y0 ∪ Y1 are the roots of the polynomial Res(K̃(X, y, 1/S(x, y)), K̃(X, y, 1/S(x, y)), X).
Since x and y are algebraically independent over C, its irreducible factors in C(x, y)[Y]
are

(Yy − 1) , (−y + Y) ,
(
Y2xy + 2Y x2y + Yx y2 + Yx + 2Yy + xy

)
and

(
Y2xy − 2Y x2y − 3Yx y2 − 3Yx − 2Yy + xy

)
.

This proves that the cardinality of the set V of right-coordinates of elements in Y1 is 5.
If Assumption 4.5.5 were true for this model then the transitive action of Auty(O)

on Y1 implies that the sets Kv = {(u, w) : w = v and (u, w) ∈ Y1} ⊂ Y1 for v in V are
all in bijection. Indeed, Kv is equal to {a ∈ O : a ∼y (u, v)} ∩ Y1 for some (u, v) ∈ Kv.

Therefore, as Assumption 4.5.5 provides σy in Auty(O) such that σy · (u, v) = (u′, v′) ∈
Kv′ , its restriction to Kv gives an embedding into Kv′ , because σy preserves the y-adjacencies
and the y-distance. By symmetry, this proves that Kv and Kv′ are in bijection. Since
these sets form a partition of Y1, this would imply that the cardinality of V (5) divides
the cardinality of Y1 (12). A contradiction. ■

We now show that Assumption 4.5.5 is sufficient for (x, y) to admit a decoupling in
terms of level lines.

Lemma 4.5.7 (Under Assumption 4.5.5). Let a and a′ be two vertices with dx(a) = dx(a′).
Then there is a bijection between P x

a and P x
a′ . Analogously, if a and a′ satisfy dy(a) = dy(a′),

then there is a bijection between Py
a and Py

a′ .

Proof. Use Assumption 4.5.5 to produce σx in Autx(O) such that σx(a) = a′. This σx
induces a bijection between P x

a and P x
σx ·a = P x

a′ by Lemma 4.5.4 and the compatibility
between the action of σx on x-geodesics and its action on the associated 1-chains.

The following theorem gives a decoupling of (x, y) in terms of level lines.

Theorem 4.5.8 (Under Assumption 4.5.5). Define the following 0-chains:

γx = − 1
|O| ∑

i≥1
|Xi| ∑

1≤j≤i
j odd

(
Xj

|Xj|
−

Xj−1

|Xj−1|

)
and γy = − 1

|O| ∑
i≥1

|Yi| ∑
1≤j≤i
j odd

(
Yj

|Yj|
−

Yj−1

|Yj−1|

)
.

Then (x, y) = (ω + γx) + γy + α is a decoupling of (x, y) in the orbit (with ω = 1
|O| ∑a∈O a).
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4. Decoupling with a finite group

Proof. Consider the two families of 1-chains (px
a)a∈O and (py

a)a∈O defined for a in O as

px
a =

1
|P x

a |
∑

g∈P x
a

g and py
a =

1
|Py

a |
∑

g∈Py
a

g.

For all g = (g0, . . . , gr) in P x
a , we have ∂(g) = a − g0 with g0 ∼x (x, y).

Then, εx(∂(g) − a + (x, y)) = 0. Thus, we find by linearity that εx(∂(px
a) − a +

(x, y)) = 0. The same argument shows that εy(∂(py
a) − a + (x, y)) = 0. Therefore,

both families of 1-chains (px
a)a∈O and (py

a)a∈O satisfy the conditions of Theorem 4.4.12,
which thus states that if we take

γx = − 1
|O| ∑

a∈O
∂y(px

a) and γy = − 1
|O| ∑

a∈O
∂x(py

a),

then the pair (ω + γx, γy) is a pseudo decoupling. As the geodesics are stable under
the action of their respective Galois groups by Lemma 4.5.4, it is also a decoupling.

Therefore, we are left to prove that γx and γy admit the announced (pleasant) ex-
pressions. We only treat the case of γx, the case of y being totally symmetric.

First, note that, by Lemma 4.5.7, the cardinality of P x
a (resp. Py

a ) depend only on
the x-distance (resp. y-distance) of a. For i a non-negative integer, we denote by mx

i
(resp. my

i ) the cardinality of P x
a (resp. Py

a ) for any a such that dx(a) = i (resp. dy(a) = i).
The expression of the boundary of a geodesic (Lemma 4.5.3) combined with the

partition of O into x-level lines yields

γx = − 1
|O| ∑

i≥0
∑

a∈Xi

∂y(px
a) = − 1

|O| ∑
i≥0

1
mx

i
∑

a∈Xi

∑
g∈P x

a

∑
j odd
j≤i

(
gj − gj−1

)
.

If we denote
Si

j =
1

mx
i

∑
a∈Xi

∑
g∈P x

a

gj,

then γx rewrites as

γx = − 1
|O| ∑

i≥1
∑

j odd
j≤i

Si
j − Si

j−1.

First, observe that, for any x-geodesic (g0, . . . , gi), the j-th component gj has x-
distance j, so the vertices appearing in Si

j with nonzero coefficients are in Xj. Thus,
we can write

Si
j = ∑

b∈Xj

λ
i,j
b b.

Let σx be in Autx(O). Remind that σx induces a bijection on each x-level line and
maps bijectively P x

a and P x
σx ·a for all a. Thus, we find
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4. Decoupling with a finite group

σx · Si
j =

1
mx

i
∑

a∈Xi

∑
g∈P x

a

σx · gj =
1

mx
i

∑
a∈Xi

∑
g∈P x

a

(σx · g)j =
1

mx
i

∑
a∈Xi

∑
g∈P x

σx ·a

gj = Si
j.

Under Assumption 4.5.5, the group Autx(O) acts transitively on Xj. Since Si
j is fixed

by the action of Autx(O), one concludes easily that all the coefficients λ
i,j
b are equal to

some scalar λi
j and that Si

j = λi
jXj (∗). To compute the value of λi

j, we recall the
existence of the augmentation morphism ε : C0(O) → C which associates to a 0-chain
the sum of its coefficients. We apply ε to each side of (∗). On the one hand, ε(Si

j) =

∑a∈Xi
1

|P x
a | ∑g∈P x

a
1 = ∑a∈Xi

1 = |Xi|. On the other hand, ε(λi
jXj) = λi

j|Xj|. Therefore,

we deduce λi
j =

|Xi |
|Xj| and the announced expression for the decoupling follows.

Remark 4.5.9. For C a field of characteristic zero and K̃(x, y) an irreducible polynomial
in C[x, y], the semi-algorithm in [Buc24] tests the existence and computes, if it exists, a
Galois decoupling for a given regular fraction H(x, y) in C(x, y). This algorithm also
works when the orbit is infinite but it might not always terminate.

Buchacher’s strategy consists in determining the poles on the kernel curve Et (Sec-
tion 2.1.1) of a possible decoupling pair (F(x), G(y)) of H(x, y). This relies on the com-
putation of the dynamical orbit of the poles (α, β) of H(x, y), viewed as a function on
the kernel curve Et. More precisely, one takes the horizontal line P1 × {β}, intersects it
with Et, then takes the vertical lines through these intersection points and determines
their intersections with Et and so on. The collection of points of Et obtained in this way
is the dynamical orbit of the point (α, β).

The orbit of S(x, y) as defined in Section 3.1.1 coincides with the dynamical orbit
of the generic point of Et (see [Har77, Example 2.3.4]). Therefore, it happens that the
dynamical orbit of certain points on Et is finite while the dynamical orbit of the generic
point is infinite.

Our approach relies crucially on the fact that the dynamical orbit of the generic point
is finite and we need to compute its orbit entirely in order to use Galois theoretic argu-
ments. Thus, the complexity of our decoupling algorithm depends on the complexity
of the orbit. However, the computation of the orbit does not depend on the regular
fraction H(x, y).

The complexity of the algorithm of [Buc24] depends on the algebraic complexity of
the poles of H(x, y) and of their dynamical orbit. Hence, Buchacher’s algorithm might
be more efficient than ours if the algebraic complexity of the poles of H(x, y) and their
dynamical orbit is not too big.

Our approach generalizes [BBR21, Theorem 4.11] which is only valid for a cyclic
orbit. In [DHRS18; HS21], the authors give a criterion to test the decoupling of a regular
fraction H(x, y) that is based on the computation of orbit-residues. These orbit-residues
are essentially the sum of the residues of H(x, y) along the dynamical orbit of a given pole
of H(x, y). The algorithm developed in [Buc24] relies on similar ideas. ■
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4. Decoupling with a finite group

To conclude, we have defined in this section a distance-transitivity property that is
only graph-theoretic. When this property is satisfied by the orbit-type, it leads to a
decoupling expressed in terms of level lines. As described in Appendix 4.5.2, the eval-
uation of a regular fraction on a level line is efficient from an algorithmic point of view
and so is our procedure for the Galois decoupling of a regular fraction. In Section 4.6,
we easily check Assumption 4.5.5 on various orbit-types and produce the associated
decoupling in terms of level-lines.

4.5.2 Formal computation of decoupling with level lines

As explained in Section 4.5.1, the evaluation of a regular fraction at an arbitrary
pair of elements in the orbit is expensive from a computer algebra point of view. We
describe below a family of 0-chains called symmetric chains which are easy to evaluate
on.

We will then show that the level lines introduced in Section 4.5.1 can be described
explicitly in terms of these symmetric chains. Thus, under Assumption 4.5.5, Theo-
rem 4.5.8 yields an expression of the decoupling in the orbit in terms of symmetric
chains which provides a powerful implementation of the computation of the Galois
decoupling of a regular fraction (see the Sage notebook).

Symmetric chains on the orbit

Definition 4.5.10. Let P(Z) be a square-free polynomial in C(x, y)[Z]. We define two
finite subsets of K × K to be V1(P) = {(u, v) ∈ K × K : P(u) = 0 ∧ S(x, y) = S(u, v)}
and V2(P) = {(u, v) ∈ K × K : P(v) = 0 ∧ S(x, y) = S(u, v)}.

We recall here a well known corollary of the theory of symmetric polynomials (see
[Lan02, Theorem 6.1]). Let P(x) be a polynomial with coefficients in a field L and let
x1, . . . , xn be its roots taken with multiplicity in some algebraic closure of L. If H(x)
is a rational fraction over L with denominator relatively prime to P(x), then the sum
∑i H(xi) is a well defined element of L. There are numerous effective algorithms to
compute such a sum based on resultants, trace of a companion matrix, Newton for-
mula. . . (see for example [BFSS06]).

We extend these methods to the computation of s = ∑(u,v)∈V1(P) H(u, v, 1/S(x, y))
for P a square-free polynomial such that V1(P) ⊂ O and H(x, y) a regular fraction as
follows. By definition of V1(P), we can rewrite s as the double sum

s = ∑
u / P(u)=0

∑
v / K̃(u,v,1/S(x,y))=0

H(u, v, 1/S(x, y)).

Consider the sum
∑

v / K̃(x,v,1/S(x,y))=0

H(x, v, 1/S(x, y)).
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4. Decoupling with a finite group

It is a well-defined element of k(x) which can be computed efficiently since it is a sym-
metric function on the roots of the square-free polynomial K̃(x, y, 1/S(x, y)). Let Σ(x)
be in k(x) such that

Σ(x) = ∑
v / K̃(x,v,1/S(x,y))=0

H(x, v, 1/S(x, y)).

Since the group of the orbit G acts transitively on the orbit and preserves the adjacen-
cies, it is easily seen that, for any right coordinate of the orbit u, the sum

∑
v / K̃(u,v,1/S(x,y))=0

H(u, v, 1/S(x, y))

coincides with Σ(u). Then, s = ∑u / P(u)=0 Σ(u) has the desired form and can also be
computed efficiently since it is a symmetric function on the roots of the square-free
polynomial P. The process is symmetric for V2(P). These observations motivate the
following definition.

Definition 4.5.11. A symmetric chain is a C-linear combination of 0-chains of the form
∑a∈Vi(P) a with P a square-free polynomial such that Vi(P) ⊂ O.

From the above discussion, any regular fraction H(x, y) can be evaluated on a sym-
metric chain an efficient way.

Level lines as symmetric chains

We now motivate the choice of level lines introduced in Section 4.5.1, by showing
they are symmetric chains which one can construct efficiently. We recall that the square-
free part of a polynomial P(Z) in K[Z] is the product of its distinct irreducible factors
and can be computed as P(Z)/ gcd(P(Z), P′(Z)).

Now, let P be a polynomial in C(x, y)[Z]. Then we denote by RK̃,x(P)(Z) the square-
free part of Res(K̃(x, Z, 1/S(x, y)), P(x), x) in C(x, y)[Z]. Similarly, we define RK̃,y(P)(Z)

to be the square-free part of Res(K̃(Z, y, 1/S(x, y)), P(y), y) in C(x, y)[Z]. The following
lemmas are straightforward so that we omit their proofs.

Lemma 4.5.12. Let P(Z) be a polynomial in C(x, y)[Z]. Then,

V2(RK̃,x(P)(Z)) = {a ∈ K × K : ∃a′ ∈ V1(P), a ∼y a′}

and
V1(RK̃,y(P)(Z)) = {a ∈ K × K : ∃a′ ∈ V2(P), a ∼x a′}.

Lemma 4.5.13. Let i be a positive integer. Any element a of Xi is adjacent to some element a′

of Xi−1. Moreover, if i is odd then a ∼y a′ and if i is even then a ∼x a′.
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4. Decoupling with a finite group

Now, we construct by induction a sequence of square-free polynomials (Px
j (Z))j ∈

C(x, y)[Z] which satisfy the equations

V1(Px
2i(Z)) = X2i ∪ X2i−1 and V2(Px

2i+1(Z)) = X2i+1 ∪ X2i for all i.

We set Px
0 (Z) = Z − x so that V1(Px

0 ) = X0 ⊂ O. Now, assume that we have
constructed the polynomials Px

j (Z) for j = 0, . . . , 2i. By Lemma 4.5.12 and the induction
hypothesis, V2(RK̃,x(Px

2i)(Z)) is composed of all the vertices that are y-adjacent to some
vertex in X2i ∪ X2i−1. Moreover, by the induction hypothesis, V2(Px

2i−1(Z)) = X2i−1 ∪
X2i. Hence, by Lemma 4.5.13 we find that

V2(RK̃,x(Px
2i(Z))) \ V2(Px

2i−1(Z)) = X2i+1 ∪ X2i.

Hence, if we define Px
2i+1(Z) to be RK̃,x(Px

2i)(Z) divided by its greatest common di-
visor with Px

2i−1(Z), then Px
2i+1(Z) is square-free, and the above equation ensures that

V2(Px
2i+1(Z)) = X2i+1 ∪ X2i. We construct Px

2i+2(Z) using similar arguments. Analo-
gously, one can construct a sequence of square-free polynomials (Py

j (Z))j ∈ C(x, y)[Z]
which satisfy

V1(Py
2i(Z)) = Y2i ∪ Y2i−1 and V2(Py

2i+1(Z)) = Y2i+1 ∪ Y2i for all i,

starting from Py
0 (Z) = Z − y.

As the x-level lines are disjoint sets of vertices, the 0-chain associated with Xi+1 ∪Xi
is just the sum Xi+1 + Xi. Hence, as X0 and all Xi+1 + Xi are symmetric chains, all the
xi are symmetric chains as well. The same argument holds for y-level lines. Note that,
as expected, the coefficients of the Px

i are actually in k(x) and the coefficients of the Py
i

are in k(y). By Proposition 3.1.18, one can identify k(x) (resp. k(y)) with C(x, t) (resp.
C(y, t)) by identifying 1/S(x, y) with t, x with x and y with y so that the coefficients Px

i
(resp. Py

i ) can be considered in C(x, t) (resp. C(y, t)). If the orbit is finite, the number
of x or y-level lines is also finite. Thus, there is only a finite number of polynomials
Px

i (Z). In the notation of Section 3.2.3, the minimal polynomial µx(Z) of x over k(O) is
the vanishing polynomial of the left coordinates of the orbit. It is therefore equal to the
product Px

0 (Z) · Px
1 (Z) · Px

2 (Z) · . . .

4.6 Examples of decoupling obstructions

In this last section, we check Assumption 4.5.5 and unroll the construction of the
decoupling of the previous section for many finite orbit-types. Mainly, we treat those
corresponding to walks with small steps, those corresponding to Hadamard models,
those corresponding to Fan models, and finally finite orbit-types of models with steps
in {−1, 0, 1, 2}2 (that are O12, O18 and Õ12).
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4. Decoupling with a finite group

4.6.1 Orbits of cyclic type

Assume that the orbit is a cycle of size 2n, which is the orbit-type of any small-steps
model with finite orbit. The graph of the orbit looks as follows, where we have labeled
vertices from 0 to 2n − 1. We represent both x-level lines and y-level lines.

0

1

2

3

2n − 4

2n − 3

2n − 2

2n − 1
X0 X1 Xn−2 Xn−1

0

2

1

4

2n − 5

2n − 2

2n − 3

2n − 1
Y0 Y1 Yn−2 Yn−1

Each of the x-level lines has 2 elements, so does any y-level line. The reader can check
that the permutation

σx = (0, 1)(2, 3) . . . (2i, 2i + 1) . . . (2n − 1, 2n − 2)

which corresponds to a horizontal reflection on the figure on the left-hand side, in-
duces a graph automorphism of Autx(O), that is preserving the x-distance and the
type adjacencies. Moreover, σx acts transitively on each x-level line. As the situation is
completely symmetric for y-level lines, this proves Assumption 4.5.5 for cyclic orbits.
In this section, we take the convention that the exponents on the permutation indicate
which type of level lines these automorphisms stabilize. According to Theorem 4.5.8,
we find:

(x, y) =

(
ω − 1

2n ∑
j odd

(n − j)
(
xj − xj−1

))
−
(

1
2n ∑

j odd
(n − j)

(
yj − yj−1

))
+ α.

In the above equation and in the remaining of the section, we only give the explicit
expressions of γ̃x, γ̃y and we write them between parenthesis according to their order
in the expression (x, y) = γ̃x + γ̃y + α. The above decoupling equation corresponds to
the decoupling construction obtained for small steps walks in [BBR21, Theorem 4.11].

4.6.2 Hadamard models

We recall here the form of the Hadamard orbits, computed in Proposition 3.1.14,
together with annotations for the level lines.
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(x0, y0) (x0, yj)

(xi, y0) (xi, yj)

X0

X1

(x0, y0) (xi, y0)

(x0, yj) (xi, yj)

Y0

Y1

These orbit-types are very symmetric. The x-level lines X0 is {(x, yj) : 0 ≤ j ≤
m − 1} while X1 = {(xi, yj) : 0 ≤ j ≤ m − 1 and 1 ≤ i ≤ n − 1}. Thus, |X0| = m and
|X1| = (n − 1)m. It is easy to prove that any element of Autx(O) has the form

ϕx
σ,τ : (xi, yj) 7→ (σ(xi), τ(yj)),

for τ a permutation of the set {yj : 0 ≤ j ≤ m − 1} and σ a permutation of {xi :
0 ≤ i ≤ n − 1} such that σ(x) = x. An analogous description holds for the y-level
lines and Auty(O) proving that the Hadamard models satisfy Assumption 4.5.5 and
that Autx(O) ≃ Sn−1 × Sm and Auty(O) ≃ Sn × Sm−1. Thus, Theorem 4.5.8 gives the
following decoupling:

(x, y) =
m(n − 1)

nm

(
x0

m
− x1

m(n − 1)

)
+

n(m − 1)
nm

(
y0

n
− y1

n(m − 1)

)
+ ω + α

=

(
1
m

x0

)
+

(
m − 1

nm
y0 −

1
nm

y1

)
+ α =

(
1
m

x0

)
+

(
1
n

y0 − ω

)
+ α,

with ω = 1
mn (y0 + y1). Note that any Hadamard model where degx K̃(x, y) > 1 and

degy K̃(x, y) > 1 always contains a bicolored square, so the regular fraction xy never
admits a decoupling (see Example 4.2.4).

The complete description of the groups Autx(O) and Auty(O) obtained above is
particularly useful to construct examples of orbits whose graph automorphisms are
not necessarily Galois automorphisms as illustrated below.

Example 4.6.1. Consider the nontrivial unweighted model defined by S(x, y) =
(
x + 1

x

) (
yn + 1

yn

)
.

Then by Proposition 22 in [BBM21], the orbit has the form

{x,
1
x
} × {ζ iy, ζ i 1

y
for i = 0, . . . , n − 1}

where ζ is a primitive n-th root of unit. Hence, the extension k(O) equals C(x, y) =
k(x, y). Consider the tower of field extensions k(x) ⊂ k(x, yn) ⊂ k(x, y). Since k(x) co-
incides with C(x, yn + 1

yn ) and k(x, yn) with C(x, yn), the multiplicativity of the degree
of a field extension yields

[k(O) : k(x)] = [C(x, y) : C(x, yn)]× [C(x, yn) : C(x, yn +
1
yn )] = n × 2.
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Indeed, since x and y are algebraically independent over C, the element yn is not a
m-th power in C(x, yn) for m dividing n. Thus, the minimal polynomial of y over the
field C(x, yn) is yn − yn so that [C(x, y) : C(x, yn)] equals n. Moreover, since yn does not
belong to C(x, yn + 1

yn ), its minimal polynomial over the later field is y2 − (yn + 1
yn )y+ 1.

Thus, Gx ⊊ Autx(O) because Gx is a dihedral group of size 2n and Autx(O) is S2n by
the above description. ■

4.6.3 Fan models

We study a class of models derived from the ones arising in the enumeration of
plane bipolar orientations (see [BFR20]). The fan models are derived from those intro-
duced in [BFR20, Equation (7)] by a horizontal reflection.

Definition 4.6.2. For i ≥ 0, define Vi(x, y) = ∑0≤j≤i xjyi−j. If z1, . . . , zp are complex
weights, with zp being nonzero, we define the p-fan to be the model with step polyno-
mial

S(x, y) =
1

xy
+ ∑

i≤p
ziVi(x, y).

By [BBM21, Proposition 3], the orbits of models related to one another by a reflection
are isomorphic so that one can directly use the orbit computations of Proposition 4.4 in
[BFR20] to compute the orbit of a p-fan.

Proposition 4.6.3. Let x0, . . . , xp be defined as the roots of the equation S(x, y) = S(x, y) with
x0 = x and xp+1 = y. Moreover, for 0 ≤ i ≤ p + 1, denote yi = xi.

In particular, yp+1 = y. Then the pairs (xi, yj) with i ̸= j form the orbit of the walk for the
p-fan.

Note that all these models have small backward steps and that they all have an
x/y symmetry. As a result, the orbit has size (p + 2)(p + 1), and the cardinalities of
the level lines are |X0| = p + 1, |X2| = p + 1 and |X1| = p(p + 1). The y-level lines
are symmetric. Below is a depiction of this orbit type, with the indices i and j satisfy
0 < i ̸= j < p + 1. Note that the orbit of the p-fan contains a bicolored square, hence no
decoupling of xy is possible (see Example 4.2.4).
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(x0, yp+1) (xi, yp+1)

(xi, yj)

(xp+1, yj) (xp+1, y0)

(xi, y0)(x0, yj)

X0 X1 X2

Y0

Y1

Y2

The groups Autx(O) and Auty(O) contain in particular the following family of auto-
morphisms

ϕx
σ,τ : (xi, yj) 7→ (σ(xi), τ(yj)),

indexed by permutations σ and τ such that σ(x0) = x0 and τ(yp+1) = yp+1. This family
of automorphisms acts transitively on the level lines proving Assumption 4.5.5. Thus
using Theorem 4.5.8 we obtain the decoupling equation of (x, y) as

(x, y) =
(p + 1) + p(p + 1)
(p + 1)(p + 2)

(
x0

p + 1
− x1

p(p + 1)

)
+

(p + 1) + p(p + 1)
(p + 1)(p + 2)

(
y0

p + 1
− y1

p(p + 1)

)
+ ω + α

=

(
x0

p + 1
− x1

p (p + 1) (p + 2)
+

x2

(p + 1) (p + 2)

)
+

(
y0

p + 2
− y1

p (p + 2)

)
+ α.

4.6.4 Orbit type O12

Below are the x and y-level lines for the orbit type O12:
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Consider the following permutations of the vertices of the orbit:

τx,y = (1 2)(4 5)(6 7)(9 10)(8 11) the vertical reflection on both sides,
τx = (0 3)(1 6)(2 7)(4 11)(5 8) the horizontal reflection on the left-hand side,

τy = (0 1 2)(3 4 5)(6 10 8)(7 11 9) the 2π
3 rotation on the right-hand side.

The reader can check that these automorphisms are elements of Autx(O) or Auty(O)
according to their exponents and that their action on the corresponding level lines is
transitive.

Therefore Assumption 4.5.5 holds for the orbit type O12. The cardinality of O is 12
and one can write ω = 1

12 (x0 + x1 + x2 + x3). Thus, according to Theorem 4.5.8, the
decoupling equation is

(x, y) =
2
12

( x2

4
− x3

2

)
+

4 + 4 + 2
12

( x0

2
− x1

4

)
+

3 + 6
12

(y0

3
− y1

3

)
+ ω + α

=
( x0

2
− x1

8
+

x2

8

)
+
(y0

4
− y1

4

)
+ α.

4.6.5 Orbit type Õ12

We represent below the x and y-level lines for the orbit type Õ12:
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4. Decoupling with a finite group

We find the following automorphisms:

τx,y = (1 2)(3 8)(4 7)(5 6)(9 11) the vertical reflection,

τx = (0 1 2)(3 5 7)(4 6 8)(9 10 11) the 2π
3 rotation.

One can check that their action is transitive on the x-level lines. As the situation is
completely symmetric for y-level lines, Assumption 4.5.5 holds for this orbit type. Thus,
according to Theorem 4.5.8 and taking ω = 1

12 (x0 + x2 + x3), the decoupling equation
is

(x, y) =
6 + 3

12

( x0

3
− x1

6

)
+

6 + 3
12

(y0

3
− y1

6

)
+ ω + α

=
( x0

3
− x1

24
+

x2

12

)
+
(y0

4
− y1

8

)
+ α.

4.6.6 Orbit type O18

We represent below the x and y-level lines for the orbit type O18.
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We present some elements belonging to the groups Autx(O) and Auty(O):

τxy = (1 2)(6 11)(4 5)(7 10)(8 9)(13 15)(14 17)(12 16) the vertical reflection,

τy = (0 1 2)(3 4 5)(6 7 9)(8 10 11)(12 13 14)(15 16 17) the 2π
3 rotation for dy(v) ≤ 2

+ rotating each "ear"
,

τx
1 = (0 3)(1 6)(2 11)(4 12)(5 16)(7 13)(8 14)(9 17)(10 15) the horizontal reflection,

τx
2 = (15 17)(8 10)(4 5)(7 9)(13 14)(1 2) the pinching of the upper "arms".

The reader can check that these elements act transitively on their respective level lines
which proves Assumption 4.5.5 for O18. Thus, according to Theorem 4.5.8 and taking
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4. Decoupling with a finite group

ω = 1
18 (x0 + x1 + x2 + x3), the decoupling equation is

(x, y) =
8
18

( x2

4
− x3

8

)
+

4 + 4 + 8
18

( x0

2
− x1

4

)
+

6
18

(y2

6
− y3

6

)
+

3 + 6 + 6
18

(y0

3
− y1

3

)
+ ω + α

=
( x0

2
− x1

6
+

x2

6

)
+

(
5y0

18
− 5y1

18
+

y2

18
− y3

18

)
+ α.
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Chapter 5

Applications to algebraicity

In Chapter 3 we studied the structure of the orbit of the walk using Galois theory.
This allowed us to build tools to characterize the existence Galois invariants 3.2 and
Galois decouplings of arbitrary fractions 4. We conclude that the former only exist
when the orbit is finite. We then give a complete obstruction to the latter, as well as
explicit way to construct them. These two notions were motivated by a strategy to
prove the algebraicity of some generating functions of quadrant walks, first considered
for weighted models with small steps, as seen in Section 2.2.2. From the developments
of Chapters 3 and Chapter 4, the objects used in this proof, rational t-invariants and t-
decouplings become viable in the setting of quadrant walks with arbitrarily large steps,
and small backward steps.

The present chapter begins with a summary of the strategy to show algebraicity
of the generating function of weigthed walks with small backwards steps and a finite
orbit, that was illustrated on the Gessel model in Section 2.2.2. We explain how one can
combine the approach of Bousquet-Mélou and Jehanne on equations with one catalytic
variable [BJ06] and the notion of Galois decoupling and invariants of Chapters 3 and 4
to study the algebraicity of the generating functions for models with small backward
steps.

We then give two examples of the application of this strategy in the last two sections.
In the first example, we apply the strategy all the way down to prove the algebraicity of
a weighted model Gλ with large forward steps. Moreover, we provide an explicit van-
ishing polynomial for its generating function, proving a conjecture of [BBM21]. We then
use this explicit polynomial to study the asymptotics of the excursions on this model. In
the second example, we consider a family of models, called the stretched Gessel models.
We show that they all have a finite orbit, and describe it completely. In turn, we use it to
construct explicit pairs of rational invariants. Moreover, we find Galois decouplings for
a family of fractions xa+1yb+1. This allows us to conjecture that the generating function
of walks for stretched Gessel models are algebraic for the corresponding starting points
(a, b).
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5. Applications to algebraicity

5.1 Algebraicity strategy

In Section 1.2.3, we showed how to derive a functional equation for the generating
function Q(x, y) of weighted walks in the quadrant. Its complexity arises mainly from
the backwards step, that force to take into account power series derived from Q(x, y)
that are the sections, and that are the generating functions of walks terminating at a
given coordinate. For weighted model whose backward steps are small, the number of
sections that appear remains modest, and thus the functional equation is similar to the
one for walks with small steps. From the reasoning made in Section 1.2.3, we obtain the
following functional equation for Q(x, y):

K̃(x, y)Q(x, y) = xi0+1yj0+1 − ty([x−1]S(x, y))Q(0, y)− tx([y−1]S(x, y))Q(x, 0)

+ t([x−1y−1]S(x, y))Q(0, 0)
(5.1.1)

with K̃(x, y) = xy(1− tS(x, y)), for the model is assumed to have at least one backward
step in each direction.

We now see that the functional equation has the following form:

K̃(x, y)Q(x, y) = xy + A(x) + B(y), (5.1.2)

with power series A(x) ∈ C[x]JtK and B(y) ∈ C[y]JtK respectively equal to

A(x) def
= −tx([y−1]S(x, y))Q(x, 0)

B(y) def
= −ty([x−1]S(x, y))Q(0, y) + t([x−1y−1]S(x, y))Q(0, 0).

The remaining of the strategy then only requires that the orbit associated to the ker-
nel polynomial K̃(x, y) (defined in Chapter 3) is finite. The earlier example of walks
with small steps (see Section 2.2.2) suggests that the finiteness of the orbit is not a su-
perfluous assumption for proving algebraicity.

5.1.1 Decoupling and first pair of invariants

First, find a pair of t-invariants which involve A(x) and B(y). One way to obtain
such a pair of t-invariants is by looking at (5.1.2) above.

Using the results of Chapter 4 and the finiteness of the orbit, we may decide whether
the regular fraction xy admits a Galois decoupling of the form

xy = F(x) + G(y) + K̃(x, y)H(x, y)

for F(x) ∈ C(x, t), G(y) ∈ C(y, t), and H(x, y) ∈ C(x, y, t) regular. If the fraction
H(x, y) has poles of bounded order at x = 0 and y = 0, this decoupling is also a t-
decoupling (Definition 2.2.8). We then combine the t-decoupling with (5.1.2) to obtain
the following rewriting

K̃(x, y) (Q(x, y)− H(x, y)) = (F(x) + A(x)) + (G(y) + B(y)) .
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5. Applications to algebraicity

Note now that the right-hand side is of the form U(x) + V(y). The series Q(x, y) being
a generating function of walks in the quadrant, it belongs to C[x, y]JtK, so it indeed has
poles of bounded order at x = 0 and y = 0. By assumption on H(x, y), this is also the
case for the series Q(x, y)− H(x, y). Therefore, the pair

(I1(x), J1(y)) = (F(x) + A(x),−G(y)− B(y)). (5.1.3)

is a pair of t-invariants (Definition 2.2.6), and this pair involves the power series A(x)
and B(y) as desired.

5.1.2 Galois invariants

Since the orbit is finite, Section 3.1.2 asserts that there must exists a nontrivial pair
of Galois invariants (I2(x), J2(y)) (Theorem 3.2.3), and gives a way to construct them
(Section 3.2.3). If the fraction (I2(x) − J2(y))/K̃(x, y) has poles of bounded order at
x = 0 and y = 0, they are are indeed t-invariants. In the end, we get a pair of rational
t-invariants

(I2(x), J2(y)). (5.1.4)

5.1.3 Pole elimination

We now hope to be able to combine the pairs of t-invariants (I1(x), J1(x)) and
(I2(x), J2(y)) through pairwise additions and multiplications in order to produce a
pair of t-invariants (I(x), J(y)) that satisfies the conditions of Lemma 2.2.7. More pre-
cisely, we want to find a nonzero polynomial P(X, Y) ∈ CJtK[X, Y], which allows
to construct a pair of t-invariants (I(x), J(y)), defined as I(x) = P(I1(x), I2(x)) and
J(y) = P(J1(x), J2(y)). We would like the function (I(x) − J(y))/K̃(x, y) to have no
pole at x = 0 nor y = 0, so we may apply Lemma 2.2.7 to the pair of t-invariants
(I(x), J(y)). Using Lemma 2.2.10, it is enough to construct P(X, Y) so that the series
I(x) and J(y) have no pole at x = 0 or y = 0. There is currently no guarantee that such
a polynomial always exists. Hence, we do it case by case depending on the expansion
in the variables x and y at 0 of the explicit pairs (I1(x), J1(x)) and (I2(x), J2(y)).

If we succeed, we thus obtain from the pair (I3(x), J3(x)) and Lemma 2.2.7 two
catalytic polynomial equations on Q(x, 0) and Q(0, y), that are P(I1(x), I2(x)) = C(t)
and P(J1(y), J2(y)) = C(t) for some power series C(t) ∈ CJtK. The invariants I(x), J(y),
and the coefficients of P are polynomials in the coefficients of A(x) and B(x), thus the
equations are actually of the form

P1(A(x), x, t, C(t), F1(t), F2(t), . . . ) = 0 (5.1.5)
P2(B(y), y, t, C(t), F1(t), F2(t), . . . ) = 0. (5.1.6)

If Equations (5.1.5) and (5.1.6) are well founded (see Section 2.2.2), then Theorem 2.2.1
allows us to conclude that the series A(x) and B(y) are algebraic over C(x, t) and
C(y, t) respectively, and therefore that Q(x, y) is algebraic over C(x, y, t). Moreover,
this method being explicit, it theoretically permits to produce explicit vanishing poly-
nomials for the series A(x) and B(y), and thus finally for Q(x, y).
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5. Applications to algebraicity

5.1.4 Discussion

For unweighted small steps models, the results of [BM10; BK10; KR12; DHRS20;
MM14; BBR21] show that the generating function is algebraic in the variables x and y
if and only if the model admits some non-trivial Galois invariants and xy has a Galois
decoupling. For weighted models with small steps, [DR19, Corollary 4.2] and [BBR21,
Theorem 4.6 and Theorem 4.11] imply that the existence of non-trivial Galois invari-
ants and of a Galois decoupling pair for xy yield the algebraicity of the generating
functions. We conjecture that the reverse implication is also true for walks with small
backwards steps, yielding an equivalence which should also be valid in the large steps
case. The general strategy explained above is summarized in Figure 5.1.1 and motivates
the above conjecture. It is the first attempt at finding uniform proofs for the algebraicity
of generating functions of large steps models.

The strategy detailed above is entirely algorithmic, except for checking that Galois
invariants and decoupling are indeed t-invariants and t-decoupling, and that combin-
ing the two pairs of invariants allows us to find a pair of invariants satisfying 2.2.7, and
finally that this last pair of invariants yields polynomial equations in one catalytic vari-
able satisfying the conditions of Theorem 2.2.1. Nonetheless, we think that this could
be made constructive, in particular via a generalization of the notion of weak invariants
[BBR21, Section 5.2] to the large steps framework.

Functional equation for
Q(x, y)

Pair of invariants involving
A(x) and B(y)

Pairs of Galois invariants

Pairs of t-invariants without
poles at x = 0 or y = 0

Algebraic equations for A(x)
and B(y)

Algebraic equation for
Q(x, y)

Galois decoupling of xy

finite orbit

Figure 5.1.1 – Summary of the strategy for proving algebraicity of generating functions of walks
with small backwards steps

5.2 The model Gλ

We consider the weighted model

Gλ = {(−1,−1), (0, 1), (1,−1), (2, 1), ((1, 0), λ)}

together with its step polynomial S(x, y) = 1
xy + y + x

y + x2y + λx, and kernel polyno-

mial K̃(x, y) = xy − t(1 + xy2 + x2 + x3y2 + λx2y). The weight λ is a nonzero complex
number. The goal in this section is to give a derivation of the algebraicity proof of the
generating function Q(x, y) of walks in the quadrant based on this weighted model.
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5. Applications to algebraicity

5.2.1 Functional equation

Following the general argument of 5.1, the functional equation for Q(x, y) is

K̃(x, y)Q(x, y) = xy − t(x2 + 1)Q(x, 0)− tQ(0, y) + tQ(0, 0).

This equation being of the shape

K̃(x, y)Q(x, y) = xy + A(x) + B(y),

with A(x) = −t(x2 + 1)Q(x, 0) + tQ(0, 0) and B(y) = −tQ(0, y), one may attempt to
apply the strategy of [BBR21] to prove the algebraicity of Q(x, y).

5.2.2 Initial invariants

Decoupling and first pair of invariants

One can check that xy admits the following t-decoupling:

xy = −3λx2t − λt − 4x
4t(x2 + 1)

+
−λy − 4

4y
− K̃(x, y)

(x2 + 1)yt
.

Combining this identity with the functional equation, one obtains the following pair
of t-invariants:

(I1(x), J1(y)) =
(

3λt x2 − λt − 4x
−4t x2 − 4t

− t
(
x2 + 1

)
Q(x, 0) + tQ(0, 0) , tQ(0, y) +

λy + 4
4y

)
.

Galois invariants

The pair (I2(x), J2(y)) below is a pair of t-invariants:

(I2(x), J2(y)) =

((
−λ2 x3 − x4 − x6 + x2 + 1

)
t2 − x2λ

(
x2 − 1

)
t + x3

t2x (x2 + 1)2 ,
−t y4 + λty + y3 + t

y2t

)
.

5.2.3 Pole elimination and algebraicity

As we now have two pairs of t-invariants P1 = (I1(x), J1(y)) and P2 = (I2(x), J2(y)),
we perform some algebraic combinations between them in order to eliminate their
poles. To lighten notation, we write the component-wise operations on the pairs Pi
of t-invariants. Computations can be checked in the joint Maple worksheet.

Consider the Taylor expansions of the first coordinates:

I1(x) =
λ

4
+ O(x) ,

I2(x) = x−1 + O(x) .
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5. Applications to algebraicity

Out of these two pairs of t-invariants, we first produce a third pair of t-invariants with-
out a pole at x = 0 as follows:

P3 = (I3, J3)
def
= P2

(
P1 −

λ

4

)
.

The first coordinates of the pairs P1 and P3 do not have a pole at x = 0. The Taylor
expansion of their second coordinates J1(y) and J3(y) at y = 0 is as follows:

J3(y) = y−3 + (tQ(0, 0) + λ) y−2 + t
(

Q(0, 0) λ +
∂2Q
∂y2 (0, 0)

)
y−1 + O

(
y0) ,

J1(y) = y−1 + O
(
y0) .

In order to produce a pair of t-invariants satisfying the assumption of the Invariant
Lemma, we need to combine P1 and P3 in order to eliminate the pole at y = 0. Note
that, since the first coordinates of P1 and P3 have no pole at zero, the first coordinate of
any sum or product between these two pairs have no pole at x = 0. Using the simple
pole at y = 0 of J3, we produce a new pair P4 whose coordinates have no pole at x = 0
nor y = 0 by setting

P4 = (I4, J4)
def
= P3 − P3

1 +

(
2tQ(0, 0)− λ

4

)
P2

1 +

(
2t

∂2Q
∂y2 (0, 0)− t2Q(0, 0)2 +

5λ2

16

)
P1.

By Lemma 2.2.10, the pair P4 is a pair of trivial t-invariants. Therefore, the Invariant
Lemma 2.2.7 yields the existence of a series C(t) in C((t)) such that I4(x) = C(t) and
J4(y) = C(t).

The value of C(t) can be deduced from the values of Q(0, y) and its derivatives
at 0 by looking at the Taylor expansion of J4(y) at y = 0. The verification that the
polynomial equations I4(x) = C(t) and J4(y) = C(t) are well-founded is done in the

Maple worksheet. We only give here the form of the well-founded equation for F(y) def
=

Q(0, y):

F(y) = 1 + t
(

t2yF(y)
(

∆(1)F(y)
)2

+ λtF(y)∆(1)F(y) + t
(

∆(1)F(y)
)2

(5.2.1)

+2tF(y)∆(2)F(y) + yF(y) + λ∆(2)F(y) + 2∆(3)F(y)
)

.

Theorem 2.2.1 with L = Q(λ) implies that the generating function of the weighted
model Gλ is algebraic over Q(λ)(x, y, t). Moreover, one can show that, at any step of
our reasoning, one may have taken the weight λ to be zero. In particular, the generating
function of the model G0 is algebraic. Thus, the excursion generating functions Q(0, 0)
of the reverse models of G0 and G1 (obtained by the map (i, j) 7→ (−i,−j)) are algebraic
over Q(t), which was conjectured in [BBM21].
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5. Applications to algebraicity

5.2.4 Explicit polynomial equation for Q(0, 0)

We start from the functional equation (5.2.1) obtained for Q(0, y), because it is the
simplest of the two. Besides F(y), there are three unknown functions: F(0) (the excur-
sions series), F′(0) and F′′(0). The above equation can hence be rewritten as

P(F(y), F(0), F′(0), F′′(0), t, y) = 0, (5.2.2)

with P(x0, x1, x2, x3, t, y) a polynomial with coefficients in Q(λ).
The method of Bousquet-Mélou and Jehanne consists in constructing more equa-

tions from (5.2.2). For that purpose, we search for fractional power series * yi’s that are
solutions of (5.2.2) and of the following equation

(∂x0 P) (F(y), F(0), F′(0), F′′(0), t, y) = 0. (5.2.3)

Then the paper [BJ06] points out that any such solution is also a solution of the follow-
ing equation (

∂yP
)
(F(y), F(0), F′(0), F′′(0), t, y) = 0. (5.2.4)

Moreover, these solutions are double roots of D(F(0), F′(0), F′′(0), t, y), the discrimi-
nant of P with respect to x0 [BJ06, Theorem 14]. If there are enough fractional power
series yi’s (at least the number of unknown functions), then the result of [BJ06] pro-
vides “enough” independent polynomial equations Pi(x0, x1, x2) relating the unknown
functions (here F(0), F′(0) and F′′(0)) so that the dimension of the polynomial ideal
generated by the Pi’s is zero. This shows that one can eliminate the unknown series
between these multivariate polynomial equations to find a one variable polynomial
equation for each of the unknown series.

Let y be a solution to (5.2.3). Eliminating F′′(0) between (5.2.3) and (5.2.4), one finds
a first equation between y and F(y):

−2F(y)t y4 + F(0)2 t2yi − 4F(0)F(y) t2y + 3y t2F(y)2 − F(0)λty

+ F(y)λty + F(y) y3 − 2F′(0)ty − y3 − 4tF(0) + 4F(y)t = 0.
(5.2.5)

Now, eliminating F(y) between (5.2.5) and (5.2.2), and removing the trivially nonzero
factors, we obtain the following polynomial equation satisfied by y:

2t y4 − y3 + λty + 2t = 0. (5.2.6)

Using Newton polygon’s method, we find that, among the four roots of the irreducible
polynomial above, exactly three are fractional power series y1, y2 and y3 that are not
formal power series. The last root, denoted y0, is a Laurent series with a simple pole at
t = 0. Moreover, (5.2.6) yields

t =
y0

2y04 + λy0 + 2
,

*. A fractional power series is an element of CJt1/dK for some positive integer d.
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so that Q(λ, t) ⊂ Q(λ, y0). Replacing t by the above expression in (5.2.6) and factoring
by y − y0, we obtain the minimal polynomial M(y0, y) satisfied by the series y1, y2, y3
over Q(λ, y0) as:

M(y0, y) = 2y0
3y3 − y0

2λy − y0λy2 − 2y0
2 − 2y0y − 2y2. (5.2.7)

This polynomial of degree 3 is irreducible over the field Q(λ, y0) ⊂ Q(λ)((t)) be-
cause otherwise one of the series yi’s would belong to Q(λ, y0) which is impossible since
the yi’s are not Laurent series in t. Since Q(λ, y0, F(0), F′(0), F′′(0)) ⊂ Q(λ)((t)), the
same argument shows that M(y0, y) remains irreducible over the field Q(λ, y0, F(0), F′(0), F′′(0)).

Now, since the yi’s are double roots of D(F(0), F′(0), F′′(0), t(y0), y), the polynomial
M(y0, y)2 must divide D(F(0), F′(0), F′′(0), t(y0), y) so that the remainder R(y) in the
euclidian division of D(F(0), F′(0), F′′(0), t(y0), y) by M(y0, y)2 should be identically
zero. The polynomial R(y) has degree at most 5 (the discriminant has degree 12 and
M(y0, y)2 has degree 6), and we write it as

R(y) = e1 + e2y + e3y2 + e4y3 + e5y4 + e6y5

with ei a polynomial in y0, F(0), F′(0) and F′′(0). Hence, each of its coefficients gives
an equation ei = 0 on the unknown functions in terms of y0. We first eliminate F′′(0)
between e1 and e2 which yields an equation e7 between y0, F(0), F′(0). We get another
such equation e8 by eliminating F′′(0) between e1 and e3. Finally, eliminating F′(0) be-
tween e7 and e8 yields an equation e9 over Q(λ) between y0 and F(0). The polynomial
defining the equation e9 factors into 6 factors. Among these 6 factors, there are two
nontrivial algebraic equations for F(0). To decide which of these factors is a polyno-
mial equation for F(0), we compute the first terms of the t-expansion F(0) = Q(0, 0, t)
(which is easy from the functional equation for Q(x, y)) and of y0(t) (thanks to the New-
ton method) and we plug these approximations in the two factors of e9. One finds that
F(0) is algebraic of degree 8 over Q(λ)(y0). One eliminates y0 thanks to its functional
equation and, thanks to Maple, one verifies that F(0) is algebraic of degree 32 over Q(t)
(see the Maple worksheet). This gives the following result:

Proposition 5.2.1. The series Q(0, 0) is algebraic of degree 8 over Q(λ)(y0) (for any λ).
Hence, as y0 has degree 4 over Q(λ)(t), we conclude that Q(0, 0) is an algebraic series of
degree 32 over Q(λ)(t).

We note that any step of our procedure remains valid if one specializes λ to 0 and 1
so that the excursion series Q(0, 0) of the models G0 and G1 remains algebraic of degree
32 over Q(λ)(y0).

5.2.5 Asymptotics

In [DW15], Denisov and Wachtel propose a method to compute the asymptotic be-
haviour for the number of excursions when the model is aperiodic (see [BBM21, Theorem
3.11] for details). This result gives that the number of excursions for the model Gλ with
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λ ̸= 0 is asymptoptically κµnn−5/2. The model G0 is not aperiodic. [BBM21, Theorem
3.11] gives the value ( 3

16 )
3/4 of the radius of convergence of the generating function

counting excursions for G0. However, it only gives upper and lower bounds for the
asymptotic of G0. Using the explicit vanishing polynomial P1(t, y) for the generating
function Q(0, 0) ∈ QJtK of excursions on the model G0 over Q(t), we follow the method
exposed in [FS09] to compute precisely the asymptotics of its coefficients.

We remark that, in the case λ = 0, the coefficients of P1 belong to Q[t4]. Hence, we

may write Q(0, 0) = F(t4) for some F ∈ QJtK. Writing P(t4, y) def
= P1(t, y), we have

that F(x) satisfies the equation P(t, F(t)) = 0. We thus focus on the asymptotics of
the coefficients of the power series F(t). We follow the method of singularity analysis
detailed in [FS09, p. VII.7.1]. Thus, we first locate the dominant singularity of F(t), and
then compute the Newton polygon at this singularity to determine its nature.

Proposition 5.2.2. Let αn = q0,0
4n be the n-th coefficient of F(t), that is, the number of excur-

sions on the model G0 of length 4n. Then, one has

αn ∼ κ
( 16

3

)3n n−5/2 with κ ≈ 0.07021064809.

Proof. We refer the reader to the joint Maple worksheet AsymptoticG0.mw for the com-
putation’s details. We start from the polynomial equation P(t, F(t)) = 0 satisfied by
F(t) to perform some singularity analysis.

We first compute the exceptional set ξ of P, which provides a set of potential can-

didates for the dominant singularity. It is the set of roots of the discriminant R(t) def
=

Res(P(t, y), ∂yP(t, y), y). From Pringsheim’s Theorem [FS09, Th. IV.6], the radius of
convergence ρ = ( 3

16 )
3 of F(t) must be a dominant singularity of F(t). Moreover, we

check that no other element of ξ has modulus ρ, thus ρ is the only dominant singularity
of F(t) (see the joint Maple worksheet for the computations).

We now determine the nature of F(t) at this singularity. Computing the Puiseux
expansions of the roots of P(t, Z) at t = ρ, one sees that there are 16 branches that have
an algebraic singularity at ρ with an expansion of the form a + b(1− t

ρ ) + c(1− t
ρ )

3/2 +

O((1 − t
ρ )

2), while the other ones do not have a singularity at this point. Therefore,

from Darboux’s theorem [Mel21, Proposition 2.11], one has q0,0
4n ∼ c

Γ(− 3
2 )

( 16
3

)3n n−5/2

where c is the coefficient of (1 − t
ρ )

3/2 in the Puiseux expansion of F(x). As Γ(− 3
2 ) ≥ 0,

we know that c must be positive. But there is only one among the 16 constants c that is
greater than 0, and Maple gives c ≈ 0.1659268448, which allows us to conclude.

5.3 The models Hn (stretched Gessel models)

In the classification of models with small steps, four of them were proved algebraic.
Among them, the so-called Gessel Model, given by the Laurent polynomial

S(x, y) = (1 + 1/y)/x + (1 + y)x.
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It was a notoriously difficult model to study, and the first known proof of algebraicity
of its full generating function used heavy computer algebra (see [BK10]). Among other
proofs of this result, one relied on the general strategy developped in [BBR21], which
is the one presented in 2.2.2. It is noteworthy that no bijective proof of this result yet
exists.

. . . ︸ ︷︷ ︸
n

H1 H2 Hn

Figure 5.3.1 – The stretched Gessel models

In a private communication, Mireille Bousquet-Mélou suggested that we explore
with our tools a new family of large steps models (Hn)n which she expected to have a
finite orbit for every non-negative integer n. These models are obtained from the Gessel
model by stretching the two rightmost steps (so that we may call them the stretched Ges-
sel models). More precisely, they are defined through the following Laurent polynomial

Hn(x, y) = (1 + 1/y)/x + (1 + y)xn = (1 + y)(1/x/y + xn),

and presented in Figure 5.3.1. We show in this section that many walks based on these
models, with different starting points, give an algebraic power series Q(x, y).

5.3.1 Orbit

Here, the study of this general family of models requires some study of the Galois
groups Gx and Gy to compute decouplings and Galois invariants.

Lemma 5.3.1. Let u, v, u′, v′ ∈ K = C(x, y).

(i) (u, v) ∼ (u, v′) if and only if v′ = v or v′ = c(u, v) def
= v−1u−n−1.

(ii) (u, v) ∼ (u′, v) if and only if λ = u′

u is a solution of the equation

λ(λn − 1) = (λ − 1)c(u, v).

Proof. The polynomial K̃(x, y) = xy(1− tHn(x, y)) has respective degrees degx K̃(x, y) =
n + 1 and degy K̃(x, y) = 2, hence we find 2 solutions v′ for (i), and n + 1 solutions u′

for (ii). The verification that v′ = c(u, v) works in (i) is straightforward, hence we focus
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on (ii). Starting from (u, v) ∼ (u′, v), we derive

Hn(u, v) = Hn(u′, v)

⇐⇒ 1
uv

+ un =
1

u′v
+ u′n

⇐⇒ u′n − un =
u′ − u
uu′v

⇐⇒ λn − 1 =
λ − 1
λuv

u−n

⇐⇒ λ(λn − 1) = (λ − 1)v−1u−n−1.

As the kernel polynomial K̃(x, y) has degree 2 in the variable y, the extension k(x, y)/k(x)
is Galois, with Galois group generated by the involution σx. Its expression in k(x)(y) is
determined by its action on y, which is given by

yσx = x−n−1y−1 = c(x, y).

By the embedding extension theorem, the k(x)-algebra homomorphism σx : k(x, y) →
K can be extended to a k(x)-algebra homomorphism (also denoted σx) σx : K → K (see
Proposition 2.1.3).

We now describe the orbit of the model Hn. Let 1, λ1, . . . , λn be the n + 1 distinct
roots in K of the polynomial

Z(Zn − 1) = (Z − 1)yσx .

By applying σx to the coefficients of the above polynomial, and since σ2
x = 1 in k(x, y),

one can also note that 1, λσx
1 , . . . , λσx

n are the n + 1 distinct roots of the polynomial

Z(Zn − 1) = (Z − 1)y.

Having established these notations, we may now describe the orbit of the model
Hn.

Proposition 5.3.2. For n ≥ 1, the model Hn has a finite orbit, of cardinality 2(n + 1)2, as
illustrated in Figure 5.3.2.

Proof. We describe the pairs of the orbit that are respectively at x-distance 0, 1, 2 and 3,
or equivalently, belonging to X0, X1, X2 and X3 (see Section 4.5.1). In particular, we
show that the x-diameter of the orbit is 3. By Lemma 5.3.1, the pairs in X0 are (x, y) and
(x, yσx), so we only need to compute the x-geodesics starting from these two points,
and show that they have finite length and that there is a finite number of them. We start
from the x-geodesics starting at (x, y). Recall that c(u, v) was defined in Lemma 5.3.1.

X1. Consider u ∈ K such that (u, y) ∼y (x, y). Then by Lemma 5.3.1, u = λix for
some i ∈ {1, . . . , n}.
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X2. Consider v ∈ K and i in {1, . . . , n} with (λi x, v) ∼x (λix, y). By Lemma 5.3.1, one
must have

v = c(λix, y) = λ−n−1
i x−n−1 y = λ−n−1

i yσx .

X3. Consider u ∈ K and i ∈ {1, . . . , n} such that (u, λ−n−1
i yσx) ∼y (λi x, λ−n−1

i yσx).
By Lemma 5.3.1, one must have that u = µλi x, with µ a root of the polynomial
Z(Zn − 1)− (Z − 1)c(λi x, λ−n−1

i yσx). We compute

c(λi x, λ−n−1
i yσx) = λ−n−1

i x−n−1 λn+1
i y xn+1

= y.

Hence, by definition, one must have µ = λσx
j for some j ∈ {1, . . . , n}.

Similarly, we computes through the same arguments the x-geodesics starting from
(x, yσx). We obtain Figure 5.3.2, and conclude to the finiteness of the orbit, since no
pair has x-distance 4. The x-cliques are then of the form (x, ·), (λi x, ·), (λσx

j x, ·) and
(λi λσx

j x, ·), hence the orbit has size 2 × (1 + n + n + n2) = 2(n + 1)2.

(x, y)

(λi x, y)

(λi x, λ
−n−1
i yσx)

(λσx
j λi x, λ

−n−1
i yσx)

(x, yσx)

(λσx
j x, yσx)

(λσx
j x, (λσx

j )−n−1 y)

(λi λ
σx
j x, (λσx

j )−n−1 y)

X0

X1

X2

X3

Figure 5.3.2 – The orbit of the model Hn

From the above description of the orbit, we are in particular able to compute the
minimal polynomial of the right coordinates

µy(Z) = ∏
i
(Z − yσx λ−n−1

i ) · ∏
i
(Z − y(λσx

i )−n−1).
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Indeed, let λ be one of the roots of the polynomial Z(Zn − 1)− (Z − 1)y, so that λ ∈
{1, λ1, . . . , λn}. Then if we write z = λ−n−1y, we derive

λ(λn − 1) = (λ − 1)y

⇒λn+1 + y = λ · (y + 1)

⇒(λn+1 + y)n+1 = λn+1 · (y + 1)n+1

⇒(y/z + y)n+1 = y/z · (y + 1)n+1

⇒(z + 1)n+1 − (y + 1)n+1

yn zn = 0.

Since λn+1
i = λi · (y + 1)− y and the λi are distinct, then so are the λn+1

i , and so are the

roots of the polynomial (Z + 1)n+1 − (y+1)n+1

yn Zn of degree n + 1. Following the same
technique, we find that the minimal polynomial of the right coordinates of the orbit can
be expressed as

µy(Z) =
(
(1 + Z)n+1 − (1 + y)n+1

yn Zn
)
·
(
(1 + Z)n+1 −

(
(1 + y)n+1

yn

)σx

Zn

)
.

5.3.2 Initial invariants

We now construct the first two pairs of invariants in order to prove algebraicity. In
contrast with the study of the single model Gλ of Section 5.2, where a single orbit is
considered and where the implemented algorithms can be directly applied, we treat
here the whole family of stretched Gessel models Hn, depending on the parameter n.

Galois invariants

Since the orbit is finite by Proposition 5.3.2, Theorem 3.2.3 ensures that there must
exist a nontrivial pair of Galois invariants. Below, we show two ways to construct them.

The first one consists in exploiting the minimal polynomial of the right coordinates
of the orbit µy(Z). From Section 3.2.3, we know that a generator of the field of Galois
invariants can be found among the coefficients of this polynomial. More precisely, any
nonconstant coefficient generates kinv. Let

f (y) def
=

(1 + y)n+1

yn .

By expanding µy(Z), we have that

µy(Z) = (1 + Z)2(n+1) − ( f (y) + f (yσx))Zn(1 + Z)n+1 + ( f (y) f (yσx))Z2n.

We have that [Z2n+1]µy(Z) = 2(n + 1)− ( f (y) + f (yσx)). We also know that

yσx = x−n−1y−1 (5.3.1)
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and also that
(1 + y)σx = 1 + x−n−1y−1 = Hn(x, y)x−n(1 + y)−1. (5.3.2)

Hence, we have that

f (y) + f (yσx) =
(1 + y)n+1

yn +
Hn(x, y)n+1yn

(1 + y)n+1 .

We now see that the Galois invariant f (y) + f (yσx) does not belong to k (for instance,
y = 0 is a pole of this fraction), therefore

kinv = k ( f (y) + f (yσx)) .

We thus let the first pair of Galois invariants be (I1(x), J1(y)), with

J1(y) =
(y + 1)n+1

yn +
yn

(1 + y)n+1tn+1 .

Once this simple invariant noticed, we can a posteriori explain how we could have
found it. Starting from a fraction f (y), we know that f (y) + f (yσx) must be a Galois
invariant, for σx has order 2. If f (yσx) has an explicit expression in terms of y, then
it is easy to check if f (y) + f (yσx) is a nontrivial Galois invariant. Consider then the
equations (5.3.1) and (5.3.2). If we want to form such an f (y), we may simply kill the
contribution of factors in x in both yσx and (y + 1)σx . This dictates that we must take
f (y) = (1+y)n+1

yn , and we again see that f (y) + f (yσx) is not an element of k. This gives
an alternative proof of the finiteness of the orbit.

Note that while the expression of f (y) + f (yσx) in terms of y is simple, the expres-
sion of f (y) + f (yσx) in terms of x is more complicated, and does not seems to admit a
nice closed form for a general n.

Decoupling and other pair of invariants

Now that the orbit is guaranteed to be finite, it is natural to apply the criteria of
Chapter 4 to test whether the fraction xy admits a decoupling. This is the case for
the Gessel model H1. However, we checked that it is not the case for the generalized
versions Hn when 4 ≥ n ≥ 2, so it seems unlikely that the generating function counting
walks starting from the point (0, 0) for any of these larger models is algebraic.

This is however not the end of the story, for we may investigate other starting points
(i, j) that could lead to an algebraic power series. This amounts to testing the decou-
pling of the fraction xi+1yj+1. Proposition 7.3 in [BBR21] implies that, for H1, the frac-
tions of the form xayb with a, b ≥ 1 that admit a decoupling are precisely those satis-
fying (a, b) = (k, k) or (a, b) = (2k, k) for some k ≥ 0. This includes walks starting
at (0, 0) (corresponding to the fraction xy), but also other starting points, lying on two
lines (Figure 5.3.3, left).

This result leads us to look for such points, trying to recover a similar pattern for
the stretched Gessel models Hn when n ≥ 2. To this end, we investigate systematically
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(b) Hn for n ≥ 2 (conjectured)

Figure 5.3.3 – The algebraic starting points for the Gessel models

the Galois decoupling of monomials xayb with exponents (a, b) near the origin, which
leads us to the following conjecture.

Conjecture 5.3.3. For n ≥ 2, the fraction xayb admits a t-decoupling with respect to the
model Hn if and only if (a, b) = (n, 1) or (a, b) = ((n + 1)k, k) for some k.

Note that there is a discrepancy between the case n = 1 and the other cases. Mainly,
for n ≥ 2, there is only one conjectured line of algebraic starting points (the line ((n +
1)k − 1, k − 1))) while the diagonal (k + 1, k + 1) only exists for H1, being replaced by
the single point (n − 1, 0) for n ≥ 2.

It is easy to prove the positive part of the conjecture, meaning that for all n and the
listed (a, b) the fraction xayb indeed admits a Galois decoupling with respect to Hn.

1. For (a, b) = (n, 1), we need to show that xny admits a decoupling. This is the case,
thanks to the following identity

xny = −1
x
+

y
t(y + 1)

− K̃(x, y)
tx(y + 1)

.

2. For (a, b) = ((n + 1)k, k), we show that xayb admits a decoupling. Let k ≥ 1, and
consider the element

fk
def
= yk + (yk)σx = yk +

1
ykxk(n+1)

.

By construction, fk is fixed by σx, so the Galois correspondence implies that fk =
Fk(x, 1/Hn(x, y)) for some Fk(x, t) ∈ Q(x, t). It follows that

xk(n+1)yk = Fk(x, 1/Hn(x, y))xk(n+1) − 1
yk ,
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and thus that (Fk(x)xk(n+1),− 1
yk ) is a Galois decoupling of xk(n+1)yk. Note that

as for the Galois invariants, the expression for Fk(x) in terms of x and t seems
complicated.

The proof of the conjecture seems doable using the results of Chapter 4, for they
give complete obstructions to the decoupling of regular fractions. Below, we draw the
connection between the existence of a Galois decoupling of xayb and the fact that some
fraction can be expressed in terms of another one.

Proposition 5.3.4. Let a, b ∈ N>0 be positive integers, and set

c def
= a − b · (n + 1).

If the fraction xayb admits a Galois decoupling, then c = 0 or there is a fraction g ∈ C(Z) with

f
(

Z
Zn − 1
Z − 1

)
=

Zc − 1
Za − 1

.

Proof. Since we showed above that xayb admits a Galois decoupling when c = 0 or
(a, b) = (n, 1) (in which case, Z Zn−1

Z−1 = −Za−1
Zc−1 ), we may assume that c ̸= 0 and (a, b) ̸=

(n, 1). We apply the criterion of Proposition 4.2.7, meaning that H(x, y) = xayb admits
a Galois decoupling if and only if Hα = 0 for all α canceling decoupled fractions. In
turn, from Proposition 4.2.3, the α’s that need to be tested are exactly those induced by
bicolored cycles. It is not hard to see from Figure 5.3.2 that every bicolored cycle of O
has the form of Figure 5.3.2, parametrized by two integers i and j.

We thus evaluate H(x, y) on such cycle. To lighten notation, we write ξ j
def
= (λj)

σx .
The condition Hα = 0 for all such α is equivalent for all i, j to the following equation

(1 − λa
i )xayb + (1 − ξa

j )λ
c
i xa(yσx)b = (1 − ξa

j )xa(yσx)b + (1 − λa
i )ξ

c
j xayb.

In turn, this may be rewritten further into

(1 − λa
i )(1 − ξc

j )y
b = (1 − ξa

j )(1 − λc
i )(y

σx)b. (Ei,j)

For n ≥ 2, our goal is to show that there is no other solution than (a, b) = (n, 1).
Note that the λi and ξi are transcendental over C since they generate the transcen-

dental functions y and yσx over C (for instance, λi(λ
n
i − 1)/(λi − 1) = yσx ). In particu-

lar, λj and ξ j are not roots of units. Therefore, and since a, c ̸= 0, both sides of (Ej,j) are
nonzero. We may thus divide (Ei,j) by (Ej,j) for all i, j, to obtain the following equations
for all i, j

1 − λa
i

1 − λa
j
=

1 − λc
i

1 − λc
j
. (5.3.3)

and then
1 − λc

i
1 − λa

i
=

1 − λc
1

1 − λa
1

(5.3.4)
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for all i.
Recall that the λi’s are roots of the polynomial

Z
Zn − 1
Z − 1

− yσx .

Therefore, the extension C(yσx , λ1, . . . , λn)/C(yσx) is Galois. By (5.3.4), the element 1−λc
1

1−λa
1

is fixed by the Galois group. Therefore, by the Galois correspondence, there must exist
a fraction f (Z) ∈ C(Z) such that

1 − λc
1

1 − λa
1
= f (yσx).

But
yσx = λ1

λn
1 − 1

λ1 − 1
,

therefore one has

f
(

λ1
λn

1 − 1
λ1 − 1

)
=

λc
1 − 1

λa
1 − 1

.

Since λ1 is transcendental over C, we may as well consider it to be an indeterminate Z,
hence the claimed factorization.

It now remains to show that this last obstruction, which is purely field theoretic
corresponds to (a, b) = (n, 1). We hope that the arithmetic of the algebraic function
field C(Z)/C will allow us to prove this fact.

5.3.3 Pole elimination and algebraicity

From the explicit pairs of invariants and decouplings obtained earlier, we explicitly
proved algebraicity of the models Hn for the starting points (n − 1, 0) and (n, 0), with
n = 2, 3. Since the y-part from the Galois invariants and Galois decoupling is quite
explicit, we hope to give a general argument to prove that for starting points (a, b) =
(n − 1, 0) and (a, b) = ((n + 1)k − 1, k − 1), the generating function Q(x, y) is algebraic.
Unfortunately, the converse might be tricky. Even if we prove Conjecture 5.3.3, there is
no general argument for showing the non algebraicity.

In an upcoming paper, we plan to prove the conjecture, along with a proof that for
all n ≥ 2 and all values of (a, b) such that xa+1yb+1 admits a decoupling, the generating
function of quadrant walks on Hn starting from (a, b) is algebraic.
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Chapter 6

Decoupling with an infinite group :
the case of walks with interacting
boundaries

The chapters 3, 4 and 5 were centered around the case of a finite orbit, and alge-
braicity proofs. In particular, there always existed Galois invariants, and the prob-
lem of determining whether a function admitted a Galois decoupling was shown to
be solved. In the present chapter, we will see the counterpart where the group is infi-
nite, for weighted models with small steps. Our presentation thus illustrates more the
Section 2.1 of Chapter 2. We will see how to use the results of difference Galois theory
to reduce the problem of algebraicity of a generating function to a “decoupling” prob-
lem in a function field. In turn, we will tackle this problem using different techniques
than in Chapter 4, namely pole propagation.

This chapter is centered around the study of walks with interacting boundaries. This
problem, first introduced in [TOR14], consists in counting weighted walks in a cone
on some model S while accounting for the number of contacts with the boundaries
(the interactions). For quadrant walks, which we focus on, this amounts to count the
number of contacts of the walks with the axes i = 0 and j = 0. The study of such
problems leads to the study of the phase transitions of the model [Jan15]. More precisely,
one parametrizes the tendency of the model to stick to the boundary i = 0 (resp. j = 0)
via the Boltzmann weight b ∈ R+ (resp. a ∈ R+). The qualitative behaviour of the sys-
tem changes depending on the Boltzmann weights, thus defining its phases. Counting
the walks relative to the interaction statistics is done through functional equations that
generalize those presented in Section 1.2.3. As a result, some of the techniques devel-
oped for counting walks in the quadrant may be applied to this setting. For small steps
models, the techniques of Chapter 2 allowed authors to classify the generating function
of some models for some Boltzmann weights [BOX21; BOR19], or even to solve them
to get the full phase transition diagram such as in [TOR14].

We focus on the so-called weighted models of genus zero which correspond to the five
sets of steps below. They correspond to the case where the curve Et has genus 0, see
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Section 2.1.3. For these sets of steps, we give the full classification of the algebraic-

S1 S2 S3 S4 S5

Figure 6.0.1 – The five models of genus 0

differential nature of generating function Q(x, y) of weighted walks with interacting
boundaries with respect to the variables x and y. Recall that for every weighting (dv)v∈S
attached to the steps and Boltzmann weights a and b, the generating function Q(x, y) is
defined as

Q(x, y) = ∑
w walk

weight(w)xiyjtn,

where for w a walk, (i, j) are its ending coordinates, n is its length, and weight(w) is a
monomial depending on the weights (dv)v∈S , a and b (defined in Section 6.1.1).

To do this, we adapt the strategy of [DHRS20] that was used to classify the gener-
ating function of weighted walks based upon on the sets of steps of Figure 6.1.1. This
amounts to study the rational solutions of some functional equation (a q-difference equa-
tion), whose coefficients depend on the parameters a, b and (dv)v∈S . This q-difference
equation will be obtained in the manner described in Section 2.1.4.

In Section 6.2 we exploit the symmetries of the q-difference equation to reduce the
classification of its solutions to the study of two decoupling problems. We develop cri-
teria based on pole propagation to test the existence of rational solutions to decoupling
equations of a special form. These criterias reduce the classification of Q(x, y) to re-
lations between the weights, and they provide a concise way to explore the space of
parameters, to either prove the nonexistence of such decouplings or to find solutions.
These methods call for eventual generalizations (Section 7.2.3).

Using this technique, we ultimately obtain the form of the following theorem:

Theorem (Theorem 6.5.8, Section 6.5.3). For any weighted genus 0 model, the generating
function Q(x, y) of weighted walks in the quadrant with interacting boundaries has the follow-
ing nature in the variables x and y:

1. For the sets of steps S1 or S2 and Boltzmann weights satisfying a + b = ab, the gener-
ating function Q(x, y) is rational with specializations Q(x, 0) and Q(0, y) respectively
equal to

Q(x, 0) =
1

1 − x
ad1,0t + abd1,−1d0,1t2

1 − abd1,−1d−1,1t2

, Q(0, y) =
1

1 − y
bd0,1t + abd−1,1d1,0t2

1 − abd1,−1d−1,1t2

.

2. For the set of steps S3 and Boltzmann weights a = b = 2, the generating function Q(x, y)
is algebraic of degree at most 4, with specializations Q(x, 0) and Q(0, y) respectively
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equal to

Q(x, 0) =
1√

1 − x2 4d1,1d1,−1t2

1 − 4d1,−1d−1,1t2

, Q(0, y) =
1√

1 − y2 4d1,1d−1,1t2

1 − 4d1,−1d−1,1t2

.

3. In every other case, the series Q(x, y) is non x-D-algebraic nor y-D-algebraic (mean-
ing Q(x, y) satisfies no polynomial differential equation in x nor in y for any choice of x,
y, t and weighting (dv)v∈S , a and b).

In [DHRS20] where the Boltzmann weights a and b are both equal to one, the gener-
ating functions of the models were found to be all non x-D-algebraic nor y-D-algebraic.
The addition of the Boltzmann weights a and b allows us to find algebraic models.

Organization of the chapter

In Section 6.1, we recall standard definitions and facts in the study of quadrant
walks, mainly their statistics, the weighting associated to a walk given a weighting
((dv)v∈S , a, b), the generating function Q(x, y) of such walks, and the algebraic-differential
classification of bivariate power series. We then focus on the five sets of steps of Fig-
ure 6.1.1, for which the kernel curve has genus 0. As a result, the kernel curve admits a
rational parametrization (x(s), y(s)), for which we will recall basic facts, among which

the existence of an automorphism σ(s) def
= qs for some real number q which is not a root

of unit. We then proceed to evaluate the functional equation for Q(x, y) on this curve,
this way obtaining two independent functional equations (q-difference equations) on
the functions F̃(s) = Q(x(s), 0) and G̃(s) = Q(0, y(s)). We then compare the algebraic-
differential properties of these two functions with those of Q(x, y), thus reducing to the
study of F̃(s) and G̃(s) through these q-difference equations.

In Section 6.2, we thus devise the strategy for determining the algebraic-differential
nature of F̃(s) and G̃(s). The analytic properties of q-difference equations being rigid
enough, a theorem by Ishizaki allows us to reduce the classification to two decoupling
problems, introduced in Lemma 6.2.2, one said homogeneous, the other one inhomoge-
neous. The classification will then go as follows. For most set of steps and weighting
(see Section 6.5.2 for the one exception), and depending on the existence of solutions to
these decoupling equations, either we will be in the case of Lemma 6.2.5, and then the
generating function will not be D-algebraic in x and y, either we will be in the case of
Lemma 6.2.7, and then we will be able to give explicit algebraic solutions for Q(x, y).

Section 6.3 is thus devoted to the study of the rational solutions to decoupling equa-
tions of the form γ1(x(s), y(s)) f (x(s)) + γ2(x(s), y(s))g(y(s)) + c = 0 for all s ∈ P1,
with fractions γ1, γ2 and c depending on the weights (dv)v∈S , a, b and t. Through a
process called pole propagation, we will see that the existence of rational solutions is con-
ditioned to the relative positions of some particular points of P1 with respect to the
action of σ. More explicitly, the relative position between two points is defined as the
unique integer n = δ(P, Q) such that σnP = Q, which we call the σ-distance. In the end,
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we extract necessary conditions for the existence of rational solutions to the decoupling
problem, based on the values δ(P, Q) for (P, Q) ∈ L− ×L+, for some finite sets L− and
L+.

Section 6.4 gives a way to compute this σ-distance, based on the fact that we can
define valuations on the coordinates of the points that are considered in this chapter
(they are the orbits of points in L− and L+). These valuations evolve with the action of
σ in a deterministic way, allowing to effectively compute the σ-distance between two
points given a fixed weighting. We extend this algorithm to find algebraic relations
between the weights that guarantee a certain σ-distance.

In Section 6.5, we finally exploit the σ-distance computation of Section 6.4 along
with the criteria determined in Section 6.3 to treat all the cases. In the end, we obtain
the classification in the form of Theorem 6.5.8.

The Section 7.2 discusses various questions left at the end of the present chapter,
related to alternative proofs for the algebraic cases, the phase transitions of the models,
and the general study of these inhomogeneous decoupling equations.

6.1 Quadrant walks and q-difference equations

6.1.1 Quadrant walks with interacting boundaries

In order to introduce the generating function for walks with interacting boundaries,
we briefly reintroduce the objects covered in Chapters 1 and 2.

Figure 6.1.1 – A walk in the quadrant with set of steps S = {(−1, 1), (1,−1), (1, 1)}, using 13
steps, 2 contacts with the x-axis and 1 contact with the y-axis.

Consider a finite subset S of vectors in Z2 \ {(0, 0)}. When studying quadrant walks
based on S , several statistics are included. For a walk w of n steps, we still consider the
coordinate (i, j) of the last point w visits, as well as the number nv of occurrences of the
step v for all v in S .

The interacting boundaries qualification refers to the addition of the following statis-
tics. We now consider the number of contacts (also called interactions) of w with the
axes, which we briefly saw when considering Dyck path, in Chapter 1. Recall that a
contact with the x-axis occurs at each i ≥ 1 such that ∑j≤i vj is zero. Thus, performing
twice the step (1, 0) starting from (0, 0) accounts for two contacts with the x-axis, de-
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spite the walk remaining on the x-axis. The number of contacts with the x-axis (resp.
y-axis) is denoted by nx (resp. ny).

Probability distribution on weighted walks

In combinatorics, it is quite common to associate weights to objects, depending on
their statistics, often for probabilistic purposes. Below, we define the weight of quad-
rant walks that we consider, based on the interactions.

For each v ∈ S is given dv > 0 the real positive weight associated with the step v.
Moreover, we are also given positive real numbers a > 0 (resp. b > 0) the Boltzmann
weight associated with the x-axis (resp. y-axis). The weight of the walk w is then defined
as the monomial

weight(w)
def
=

(
∏
v∈S

dnv
v

)
anx bny .

This definition of weight is correlated with an associated probability distribution on
walks of length n, defined so that the probability of a walk w is proportional to its
weight, i.e.

Pn(w)
def
=

weight(w)

∑
w′ walk of length n

weight(w′)
.

The weighting “influences” the general shape of the walk, for instance a bigger value
for dv increases the probability of performing the step v, or a small value of b favors
walks that have fewer contacts with the y-axis. The above heuristics can be made pre-
cised through limit properties of the probability Pn, that define phases (see Section 7.2.1).

We call a weighted model of quadrant walks with interacting boundaries a set of steps
S together with a weighting, i.e. positive real weights (dv)v∈S , and Boltzmann weights
a > 0 and b > 0. Given a weighted model, we write

F
def
= Q((dv)v∈S , a, b)

for the subfield of C generated by the weights.

Generating function and functional equation

Given a weighted model (S , (dv)v∈S , a, b), the generating function of quadrant walks
on this weighted model is defined as

Q(x, y) def
= ∑

w walk
weight(w)xiyjtn = ∑

w walk

(
∏
v∈S

dnv
v

)
anx bny xiyjtn.

Since there is a finite number of quadrant walks of length n and that the walks always
terminate in the first quadrant, the generating function Q(x, y) belongs to F[x, y]JtK
(recall that RJtK denotes the ring of formal power series in the variable t with coefficients
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in the ring R). Note that it is harmless to have the dv, a and b as real numbers for the
exact counting of walks with regards to the statistics nv, nx and ny. As the transcendence
degree of C over Q is infinite, one may choose algebraically independent weights dv,
a and b over Q, and still perform coefficient extraction to get these statistics since the
coefficient [tn]Q(x, y) belongs to Q[(dv)v∈S , a, b, x, y]. This is why we directly consider
the generating function of weighted walks, only having x, y and t as variables.

The generating function is characterized through a functional equation. In Theo-
rem 6 of [BOR19] the authors derive the following explicit functional equation for the
series Q(x, y) when the steps of the model S are small (that is S ⊆ {−1, 0, 1}2):

K(x, y)Q(x, y) =
xy
ab

+ x
(

y − y
a
− tA−1(x)

)
Q(x, 0)

+ y
(

x − x
b
− tB−1(y)

)
Q(0, y)−

( xy
ab

(1 − a)(1 − b)− tε
)

Q(0, 0).
(6.1.1)

This functional equation generalizes those found in the quadrant walks literature for
the study of weighted models independently of the interaction statistics. Recall that the

polynomial K(x, y) def
= xy(1− tS(x, y)) is called the kernel, where S(x, y) def

= ∑(i,j)∈S di,jxiyj

encodes the set of steps as a Laurent polynomial. Here, the fractions Ai(x) and Bi(y)

are then defined as Ai(x) def
= [yi]S(x, y) and Bj(y)

def
= [xj]S(x, y). Finally, according to

the notation of [BOR19], the variable ε is set to 1 if the step (−1,−1) is an element of
S , and ε = 0 otherwise. This functional equation is still an equation in two catalytic
variables.

The differential classification

The problem is still to determine the classification of the generating function Q(x, y),
where it fits in the algebraic-differential hierarchy

rational ⊂ algebraic ⊂ D-finite ⊂ D-algebraic.

As seen in Chapter 1, setting the weights dv, a and b to 1 (which amounts to ignoring
the interaction and weights statistics, and is the original setting of the systematic classi-
fication), the classification of small steps models was completed in 2018. The methods
of this first classification extend when considering arbitrary positive real weights dv,
and it is now complete as well.

Some of these techniques may in turn be adapted to the study of walks with the in-
teracting boundaries statistics, where we allow other values of a and b, and the weighted
models of walks with interacting boundaries that have been studied up to now rely on
the finiteness of the classic group of the walk. This is the case in [TOR14], where the
walks with interacting boundaries are completely solved for one specific model (the
reversed Gessel model, also called Gouyou-Beauchamps) for all weights a, b > 0, es-
tablishing the full phase diagram. This is also the case in [BOX21], where the authors
fully solve the Kreweras and reverse Kreweras walks with interaction for any value
of the Boltzmann weights. Finally, in [BOR19], the authors systematically investigate
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the models having a finite group, for some Boltzmann weights, mainly (a, a), (1, b),
(a, 1) and (a, b) for a and b algebraically independent over Q, giving upper bounds on
the complexity of the generating function Q(1, 1). We propose to treat a case with an
infinite group, and for nongeneric weights di,j, a and b.

6.1.2 Genus zero models

The authors of [DHRS21] define five models called the genus zero models (the termi-
nology is explained in the next paragraph). They are listed in Figure 6.0.1 above, and
they will be referenced in this chapter as S1, S2, etc. The goal of the current chapter is
to establish the full classification of walks with interacting boundaries based on these
sets of steps.

For these sets of steps, we may perform simplifications on the general functional
equation (6.1.1). First, the Laurent polynomial is of the form

S(x, y) = d1,−1
x
y + d−1,1

y
x + d1,0x + d0,1y + d1,1xy,

with d1,−1 and d−1,1 always nonzero, and at least one of the d0,1, d1,0 or d1,1 nonzero.
Moreover, we have that A−1(x) = d1,−1x and B−1(y) = d−1,1y, and since no model
contains the step (−1,−1), the variable ε is always zero. Finally, for every model of
Figure 6.0.1, the power series Q(0, 0) is equal to 1. Indeed, any nontrivial walk one
of these models has an ending point (i, j) satisfying i + j > 0 by an easy induction.
Hence setting both x and y to 0 in Q(x, y) leaves only the term in t0, which is equal to 1.
Summarizing these simplifications, the functional equation (6.1.1) can be rewritten as

K(x, y)Q(x, y) =
xy
ab

(a + b − ab)

+ x
(

y − y
a
− td1,−1x

)
Q(x, 0) + y

(
x − x

b
− td−1,1y

)
Q(0, y).

We now introduce the following notations:

A def
= 1 − 1

a
, B def

= 1 − 1
b

, ω
def
=

1
ab

(a + b − ab),

γ1(x, y) def
=

A
x
− td1,−1

y
, γ2(x, y) def

=
B
y
− td−1,1

x
, γ(x, y) def

=
γ1(x, y)
γ2(x, y)

.
(6.1.2)

With these notations, the functional equation can finally be rewritten as

K(x, y)Q(x, y) = ωxy + x2yγ1(x, y)Q(x, 0) + xy2γ2(x, y)Q(0, y). (6.1.3)

In the remaining of the section, we show how to exploit further the particularity of
the genus 0 models to study (6.1.3), and in the end classify Q(x, y) for any weighting
on one of these set of steps.
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The kernel curve for models with genus 0

We are now going to take the geometric approach presented in Section 2.1, and use
the kernel curve Et, that is the zero-locus of K̃(x, y). Recall from Proposition 2.1.1 that
there the kernel curve has either genus 0 or genus 1. To study the models whose curve
has genus 0, it is enough to consider the five fundamental sets of steps of Figure 6.0.1.
We thus recall the specifics on this curve when it has genus 0 (thus expanding the first
point of Proposition 2.1.1).

When the kernel curve has genus 0, the authors of [DHRS21] construct a specific
rational parametrization ϕ : P1 → Et. We summarize basic facts and vocabulary on
this parametrization, following Section 4.1 of [DHRS21].

For the models of genus zero, the group of the walk acts of Et through the parametriza-
tion ϕ : P1 → Et. Its generators ι1 and ι2 have the following expression in P1 × P1.

ι1([1 : x1], [1 : y1]) =

(
[1 : x1],

[
1 :

d−1,1x2
1 + d0,1x1 + d1,1

d1,−1y1

])
, (6.1.4)

ι2([1 : x1], [1 : y1]) =

([
1 :

d1,−1y2
1 + d1,0y1 + d1,1

d−1,1x1

]
, [1 : y1]

)
. (6.1.5)

Note that we choose to write them for points of P1 × P1 written in homogeneous co-
ordinates ([1 : x1], [1 : y1]) for reasons detailed in Section 6.4. These two involutions
induce an automorphism σ of Et defined as

σ
def
= ι2 ◦ ι1.

We are now going to summarize the properties of the parametrization ϕ of Et de-
fined in [DHRS21], and that we will use in the present chapter. It is constructed so that
the action of the group of the walk lifts through ϕ in a nice way.

Proposition 6.1.1 (Section 4.1 of [DHRS21]). For any model of Figure 6.0.1 and weighting
dv, and any real number t ∈]0, 1[ transcendental over Q(di,j, a, b), the following assertions
hold.

1. There exists a rational parametrization ϕ : s 7→ (x(s), y(s)) of P1 onto Et. The fractions
x(s) and y(s) both belong to F(t)(s), where F(t) is the algebraic closure of F(t).

2. The parametrization ϕ is injective everywhere except for ϕ(0) = ϕ(∞) = Ω, with Ω def
=

([0 : 1], [0 : 1]), i.e. (x(0), y(0)) = (x(∞), y(∞)) = Ω.

3. The divisors (Proposition 2.1.4) of the functions x def
= x(s) and y def

= y(s) on the curve P1

are

(x) = 0 + ∞ − Q1 − Q2, (y) = 0 + ∞ − Q3 − Q4,

for some points Qi ̸= 0, ∞ of P1.
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4. The group lifts in the following way. There exists a real number q ̸∈ {−1, 1}, with q
algebraic over Q(di,j, t), such that for all s ∈ P1 one has

ι1(ϕ(s)) = ϕ( 1
s ) and ι2(ϕ(s)) = ϕ( q

s ).

When the context is clear, we will also denote by ι1, ι2 and σ the automorphisms on P1

defined by

ι1(s)
def
= 1

s ι2(s)
def
= q

s σ(s) def
= qs.

As the multiplicative order of q is infinite, so is the order of σ. Moreover, the only points
of P1 whose orbit under the action of σ is finite are 0 and ∞.

Proposition 2.1.13 can be made more specific on the models of genus 0.

Proposition 6.1.2 (Section 1.3 of [DHRS21]). The function field C(s)/C of P1 has the fol-
lowing lattice.

C(s)

C(x(s)) C(y(s))

C

ι1 ι2

1. The extension C(s)/C(x(s)) is Galois of degree 2, with Galois group generated by the
involution ι1. This means that if h = hι1 , then h ∈ C(x(s)).

2. Similarly, the extension C(s)/C(y(s)) is Galois of degree 2, with Galois group generated
by the involution ι2.

3. The field of constants C is the intersection C(x(s)) ∩ C(y(s)), and as a result it is also
the subfield of functions fixed by ι1 and ι2. Moreover, if f (s) is fixed by σ, then f (s)
belongs to C, σ having infinite order.

6.1.3 The q-difference equations

We now fix the setting in which we can evaluate the functional equation (6.1.3) for
Q(x, y) on the curve Et through the parametrization ϕ, in the manner of Section 2.1
of [DHRS21]. Once the conditions of this evaluation are fixed, this will transform the
catalytic equation on Q(x, y) (a power series in x and y) into a functional equation relat-
ing Q(x(s), 0) and Q(0, y(s)) (meromorphic functions over C ⊂ P1). The symmetries
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of x(s) and y(s) with respect to the group (Proposition 6.1.1) will then allow us to con-
struct a functional equation on Q(x(s), 0) only.

We first study the divisors of the functions

γ̃1(s)
def
= γ1(x(s), y(s)) γ̃2(s)

def
= γ2(x(s), y(s)) (6.1.6)

on P1 through a routine computation. Recall that

γ1(x, y) =
A
x
− t

d1,−1

y
γ2(x, y) =

B
y
− t

d−1,1

x
,

as defined in (6.1.2).

Proposition 6.1.3. For any real number t defined as in Proposition 6.1.1, the extensions
C(s)/C(γ̃1) and C(s)/C(γ̃2) have degree two, the functions γ̃1 and γ̃2 having the follow-
ing divisors

(γ̃1) = P1 + P2 − 0 − ∞, (γ̃2) = P3 + P4 − 0 − ∞.

The points P1, . . . , P4 are distinct from 0 and ∞.

Proof. In this proof, we write x = x(s) and y = y(s), these functions thus satisfying
K(x, y) = 0 for K(X, Y) the kernel polynomial. We only perform the proof for γ̃1 =
A
x − td1,−1

y , the study of γ̃2 being symmetric. The computations belong to the joint Maple
worksheet. We are going to prove that the minimal polynomial of x over C(γ̃1) has
degree 2, thus showing that [C(x) : C(γ̃1)] = 2. We will then prove that γ̃1 has the
announced poles 0 and ∞.

We first produce a vanishing polynomial of x over C(γ̃1). By definition, the poly-
nomial K(X, y) = 0 is a vanishing polynomial of x over C(y). Hence, expressing y in
terms of x and γ̃1 (which we can do since td1,−1 is nonzero), we are left to consider the
polynomial

P(X) = (d1,1d1,−1t2 − d1,0tγ̃1 + γ̃2
1)X2

+ (d0,1d1,−1t2 + Ad1,0t + (1 − 2A)γ̃1)X

+ d1,−1d−1,1t2 + A2 − A,

which by construction is a vanishing polynomial of x with coefficients in C[γ̃1] ⊂
C(γ̃1). Moreover, P(X) is nonzero, for its constant coefficient d1,−1d−1,1t2 + A2 − A ∈
F[t] is nonzero. Indeed, the real number t is transcendental over F and the coefficient
d1,−1d−1,1 of t is nonzero for all genus zero models (Figure 6.0.1). Hence, x is algebraic
over C(γ̃1).

We now show that P(X) is irreducible in C(γ̃1)[X]. First note that the leading coef-
ficient d1,1d1,−1t2 − d1,0tγ̃1 + γ̃2

1 of P(X) is nonzero. Indeed, it is a nonzero polynomial
of C[γ̃1], with γ̃1 transcendental over C (the function x is both transcendental over C

and algebraic over C(γ̃1)). Hence, P(X) is a degree two polynomial. In order to show
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it is irreducible, we thus compute its discriminant ∆ ∈ C(γ̃1) and show that it cannot
be a square in C(γ̃1). The discriminant is expressed as follows:

∆ = (−4d1,−1d−1,1t2 + 1)γ̃2
1

+ (4d1,0d1,−1d−1,1t3 − 4Ad0,1d1,−1t2 + 2d0,1d1,−1t2 − 2Ad1,0t)γ̃1

+ (d2
0,1d2

1,−1t4 − 4d1,1d2
1,−1d−1,1t4 + 2Ad0,1d1,0d1,−1t3

+ A2d2
1,0t2 − 4A2d1,1d1,−1t2 + 4Ad1,1d1,−1t2).

We see that ∆ belongs to C[γ̃1], hence ∆ is a square in C(γ̃1) if and only if ∆ is a square
in C[γ̃1]. In turn, as ∆ has degree two as a polynomial in γ̃1 (the leading coefficient
−4d1,−1d−1,1t2 + 1 is nonzero since t is transcendental over F), ∆ is a square if and only
if its discriminant δ with respect to the variable γ̃1 is zero. The discriminant δ factors in
Q[di,j, A][t] into δ = 16t2 f1 f2 f3 (the factors fi written in the table below).

Polynomial
f1 d1,−1
f2 d1,−1d−1,1t2 + A(A − 1)
f3 (d2

0,1d1,−1 + d2
1,0d−1,1 − 4d1,1d1,−1d−1,1)t2 + d0,1d1,0t + d1,1

As t is transcendental over Q(di,j, a, b), δ is zero if and only if one fi is zero if and
only if all coefficients of one fi viewed as a polynomial in F[t] are zero. Define an ideal I
of Z[di,j, A] by I = d1,−1d−1,1(d1,1, d0,1, d1,0), and for i ∈ {1, 2, 3} the ideal Ji of Z[di,j, A]
generated by the coefficients in t of fi. Then one sees that I ⊂ J1, I ⊂ J2, and finally
through elimination that I3 ⊂ J3. Hence, if δ is zero, then (d1,−1, d−1,1, d0,1, d1,0, d1,1, A)
must satisfy either d1,−1 = 0, or d−1,1 = 0, or d1,0 = d0,1 = d1,1 = 0, which is never the
case given the constraints on the supports (Figure 6.0.1). Therefore, δ is always nonzero,
∆ is never a square, and we conclude that P(X) is always irreducible in C(γ̃1)[X]. Thus,
since P is an irreducible vanishing polynomial of x, and since C(x, γ̃1) = C(x, y), this
proves that [C(x, y) : C(γ̃1)] = [C(x, γ̃1) : C(γ̃1)] = 2.

We now conclude on the poles of γ̃1. By Proposition 6.1.1, the divisors of x and y
are respectively (x) = 0+ ∞ − Q1 − Q2 and (y) = 0+ ∞ − Q3 − Q4 for some points Qi.
Hence, the poles of γ̃1 = A

x − t d1,−1
y are either 0 or ∞, which both have order at most 1.

But by Proposition 2.1.4, deg(γ̃1)∞ = [C(s) : C(γ̃1)] = 2, thus we conclude that γ̃1 has
these two poles, and thus (γ̃1)∞ = 0 + ∞.

We now determine for which real numbers t the composition of the functional equa-
tion (6.1.3) with (x(s), y(s)) (which both depend on t) is well defined.

Proposition 6.1.4. There exists a positive real number r > 0 such that for every real number
t < r transcendental over F, there exist two open sets U0 and U∞ of P1 such that 0 ∈ U0,
∞ ∈ U∞, and so that the functions Q(x(s), y(s)), Q(x(s), 0), Q(0, y(s)), are analytic on
U0 ∪ U∞. Moreover, there exists an open set V satisfying 0 ∈ V ⊂ U0 such that ι2(V) ⊂ U∞
and σ−1(V) ⊂ U0.
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Proof. We are going to show that for t small enough, the series Q(x, y) ∈ C[x, y]JtK is

convergent on {(x, y) ∈ C : |x|, |y| < 1}. Let |x|, |y| < 1, and M def
= sup {|di,j|, |a|, |b|}

(note that M is positive). Then each walk w of length n contributes to a value of norm
at most M2n to the coefficient of tn in Q(x, y). Indeed, each performed step involves
at most two weights (one di,j and possibly one additional a or b). As the steps are
small, the coefficient corresponding to w has norm at most M2n|x|n|y|n ≤ M2n, for
|x|, |y| < 1. Moreover, the set of steps of any of the considered weighted models is
finite of cardinal at most 5 (Figure 6.0.1), hence the coefficient of tn in Q(x, y) has norm
of at most

(
5M2)n. Hence, when |x|, |y| < 1, the power series Q(x, y) ∈ C(x, y)JtK

has a positive radius of convergence ρ ≥ 1
5M2 . We thus fix a real number t so that

0 < t < ρ and t is transcendental over the field F. Since the coefficients in t of Q(x, y)
are polynomials in x and y, the function Q(x, y) is analytic in x and y at (0, 0).

We now study the convergence of the composition of the functions appearing in
(6.1.3) with the parametrization ϕ(s) = (x(s), y(s)). First, the functions x(s) and y(s)
belong to C(s) with x(0) = y(0) = x(∞) = y(∞) = 0, thus they are both analytic at
the points 0 and ∞. Thus, by composition, the functions Q(x(s), y(s)), Q(x(s), 0) and
Q(0, y(s)) are analytic at 0 and ∞. This proves the existence of the two announced open
sets U0 ∋ 0 and U∞ ∋ ∞.

Finally, we construct V to be U0 ∩ ι−1
2 (U∞) ∩ σ(U0). This is open because ι2(s) =

q
s

and σ(s) = qs, which are continuous functions in P1 7→ P1. Moreover, V contains 0
because ι2(∞) = ι1(∞) = σ(0) = σ−1(0) = 0.

We now fix some small enough t transcendental over F prescribed by Proposi-
tion 6.1.4, and a parametrization ϕ accordingly. The evaluation of (6.1.3) on (x(s), y(s))
for s in U0 ∪ U∞ is thus well defined, yielding after dividing by x(s)y(s) the following
equation of meromorphic functions on U0 ∪ U∞:

0 = ω + x(s)γ̃1(s)Q(x(s), 0) + y(s)γ̃2(s)Q(0, y(s)). (6.1.7)

Define two analytic functions on the open set V by

qF(s) def
= x(s)Q(x(s), 0), qG(s) def

= y(s)Q(0, y(s)).

We now use (6.1.7) to construct meromorphic continuations F̃ of qF and G̃ of qG to
the whole complex plane C, by showing like in [DHRS20] that qF satisfies a q-difference
equation. We introduce the function

γ̃(s) def
= γ(x(s), y(s)) =

γ̃1(s)
γ̃2(s)

, (6.1.8)

where γ̃1 and γ̃2 were introduced in (6.1.6), and we rewrite (6.1.7) as follows for s in V.

−y(s)Q(0, y(s)) =
ω

γ̃2(s)
+ γ̃(s)x(s)Q(x(s), 0). (6.1.9)
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By Proposition 6.1.4, if s is in V then q
s = ι2(s) ∈ U∞, hence from (6.1.7) we also

have the following equation for s in V:

−y( q
s )Q(0, y( q

s )) =
ω

γ̃2(
q
s )

+ γ̃( q
s )x( q

s )Q(x
( q

s

)
, 0). (6.1.10)

We now use the symmetries of the functions x(s) and y(s). For all s in V, we have
by Proposition 6.1.1 that y( q

s ) = y(s), hence −y( q
s )Q(0, y( q

s )) = −y(s)Q(0, y(s)). More-
over, we also have x( q

s ) = x( s
q ), hence x( q

s )Q(x( q
s ), 0) = x( s

q )Q(x( s
q ), 0). Finally, as s

is in V, the complex number s
q = σ−1(s) is also in U0 by Proposition 6.1.4, so we can

replace x( q
s )Q(x( q

s ), 0) with qF( s
q ) in (6.1.10). Hence, eliminating y(s)Q(0, y(s)) between

(6.1.9) and (6.1.10) yields the following q-difference equation on qF(s) for all s in V:

qF( s
q ) =

γ̃

γ̃ι2
(s)qF(s) +

(
ω

γ̃2(s)
− ω

γ̃ι2
2 (s)

)
1

γ̃ι2(s)
.

As the absolute value of q is not equal to 1 (Proposition 6.1.1), this functional equation
allows us to construct a unique continuation F̃ of qF meromorphic on the whole complex
plane C, satisfying the same equation:

F̃( s
q ) =

γ̃

γ̃ι2
(s)F̃(s) +

(
ω

γ̃2(s)
− ω

γ̃ι2
2 (s)

)
1

γ̃ι2(s)
. (6.1.11)

Indeed, assuming that F̃ is a meromorphic continuation of qF on some open set U, the
functional equation (6.1.11) relates F̃(s) with F̃( s

q ) over C(s), which allows us to extend

uniquely F̃ as a meromorphic function on qU ∪U ∪ q−1U. As |q| ̸= 1 (Proposition 6.1.1),
we have that

⋃
n∈Z qnU = C, hence this process gives a unique meromorphic continua-

tion F̃ of qF on C.
Now, the functions qF and qG satisfy the linear relation (6.1.7) over C(s). This relation

provides a unique meromorphic continuation G̃ of qG to C such that F̃ and G̃ satisfy

γ̃1(s)F̃(s) + γ̃2(s)G̃(s) + ω = 0. (6.1.12)

Finally, from (6.1.11) and (6.1.12), it is easy to see that the function G̃ satisfies the
following q-difference equation:

G̃(qs) =
γ̃ι1

γ̃
(s)G̃(s) +

(
ω

γ̃1(s)
− ω

γ̃ι1
1 (s)

)
γ̃ι1(s). (6.1.13)

6.1.4 The D-algebraicity of Q(x, y), F̃(s) and G̃(s)

The algebraic-differential properties of the formal power series Q(x, y), Q(x, 0) and
Q(0, y) and their meromorphic counterparts F̃(s) and G̃(s) are related. The following
proposition relates the x and y-D-algebraicity of Q(x, y) with the s-D-algebraicity of
F̃(s) and G̃(s). As t is a fixed real number, the study of the t-D-algebraicity of Q(x, y, t)
is not easily related to the properties of F̃(s) and G̃(s), and rigid parametrizations are
needed (see [DH21]), which are not implemented in this chapter.
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Proposition 6.1.5. For t > 0 as in Proposition 6.1.4, and a weighting (dv)v, a and b, the
following statements are equivalent:

(a) Q(x, 0) is x-D-algebraic,

(a’) Q(0, y) is y-D-algebraic,

(b) F̃(s) is s-D-algebraic,

(b’) G̃(s) is s-D-algebraic,

(c) Q(x, y) is x-D-algebraic for all y,

(c’) Q(x, y) is y-D-algebraic for all x.

Proof. We recall that on the open set V, we have

F̃(s) = x(s)Q(x(s), 0), G̃(s) = y(s)Q(0, y(s)).

Up to a restriction of V, the maps x(s) and y(s) are biholomorphisms on V. The equiv-
alence between (a) and (b) (resp. (a′) and (b′)) now follows from Lemmas 6.3 and 6.4
of [DHRS18].

Moreover, the functions F̃ and G̃ are linearly related over C(s) by Equation (6.1.12),
which shows the equivalence between (b) and (b′), and thus the equivalence between
(a), (a′), (b) and (b′).

Finally, (c) is equivalent to (a) from Equation (6.1.3). Indeed, ∂xQ(0, y) = 0, so
Q(0, y) is x-D-algebraic. Hence, since x2yγ1(x, y) and K(x, y) are both nonzero elements
of C(x, y), the closure properties of the x-D-algebraic class imply that Q(x, y) is x-D-
algebraic if and only if Q(x, 0) is. Similarly, (c′) is equivalent to (a′).

Therefore, determining the differential nature of the function Q(x, y) is equivalent
to determining the differential nature of either F̃(s) or G̃(s), which satisfy functional
equations with more structure: q-difference equations. Equations (6.1.11) and (6.1.13)
do not completely characterize F̃(s) and G̃(s), so we will use in a crucial way the fact
that they continue the functions x(s)Q(x(s), 0) and y(s)Q(0, y(s)), on which we have
some grasp (information on poles near zero mainly).

Finally, we will often make use of the following proposition, which allows us to
go from meromorphic functions on C to power series, mostly to obtain equations on
Q(x, 0) (resp. Q(0, y)) from equations on F̃(s) (resp. G̃(s)).

Proposition 6.1.6. Assume that a Laurent series H(x) ∈ C((x)) induces a meromorphic func-
tion at x = 0. If H(x(s)) = 0 or if H(y(s)) = 0 for s near 0, then H(x) = 0.

Proof. Let W be a neighborhood of 0 such that H(x(s)) = 0 for all s in W \ {0}. The
function x : C → C is non-constant and analytic at 0 with x(0) = 0. Hence by the
open mapping theorem for holomorphic functions, the image of W under x is an open
neighborhood of 0. Thus, the analytic function H(x) is locally zero at 0, hence zero by
analytic continuation. The argument is similar for H(y(s)) = 0.
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6.2 Classification strategy

In the previous section, we have constructed two q-difference equations (6.1.11)
and (6.1.13) satisfied by two meromorphic functions on C, whose differential proper-
ties reflect those of the generating functions of quadrant walks Q(x, y). There are now
many results on the differential transcendence of power series solution to a q-difference
equation. One of the first of those results was proved by Ishizaki for the solutions of
equations of the form y(qs) = a(s)y(s) + b(s) [Ish98]. We apply it to equations (6.1.11)
and (6.1.13):

Proposition 6.2.1. The following statements are equivalent:

1. F̃ and G̃ are D-algebraic over C(s).

2. F̃ and G̃ are in C(s).

Proof. The real number q is not a root of unit, the coefficients of (6.1.11) and (6.1.13)
belong to C(s), and the functions F̃ and G̃ are meromorphic at s = 0. Hence we may
apply Theorem 1.2 of [Ish98] to the two equations, which shows the claim.

Thus, to investigate the D-algebraicity of F̃ (or equivalently G̃), the strategy that we
are going to explain in this section will consist in determining for which weighted mod-
els these functions can be rational. In the earlier paper applying this strategy [DHRS20]
(corresponding to the case without the interaction statistics a = b = 1), the authors
find no rational solution. Whether it exists is highly dependent on the coefficients of
the q-difference equations considered. For the classification of the models with the five
supports of Figure 6.0.1, we find a general strategy which allows us to handle almost
all the cases uniformly, its culmination being the classification in Theorem 6.5.8.

Because of the symmetries of the coefficients of equations (6.1.11) and (6.1.13), we
will reduce the study of rational solutions to these equations to what we call decoupling
equations. Recall as in 2.1.1 that the curve Et ⊂ P1 ×P1 has a uniformization ϕ : C → P1

by a smooth curve C. Consider some fraction h(x, y) ∈ C(x, y). The problem is to find
two fractions f (x) and g(y) so that the following equation holds for all points P in C,

h(x(P), y(P)) = f (x(P)) + g(y(P)).

This is called an additive decoupling of h, this notion being introduced in [BBR21]. Like-
wise, one can wonder if there exist f (x) and g(y) so that for all points P in C,

h(x(P), y(P)) = f (x(P))g(y(P)).

This is called a multiplicative decoupling of h (introduced in [BEFHR25]).
The existence of such decouplings for a fraction h(x, y) plays an important role in

the classification of generating functions enumerating walks. For instance, in the case of
quadrant walks with small steps without interacting boundaries, algebraicity is charac-
terized by the finiteness of the group, and the fact that the fraction xy admits an additive
decoupling (see [DER24]). In our case, the equations that appear are generalizations of
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the decoupling equations above, mixing the additive and multiplicative form, and they
serve the same purpose: we will see that the fact that they admit a solution or not de-
termines the position of Q(x, y) in the differential hierarchy. This explains our choice of
terminology, as we introduce them now.

Lemma 6.2.2. Assume that the functions F̃(s) and G̃(s) (defined in Section 6.1.3) are rational.
In this case, define the following elements of C(s):

f̃ (s) def
= 1

2

(
F̃(s) + F̃ι1(s)

)
, g̃(s) def

= 1
2

(
G̃(s) + G̃ι2(s)

)
,

f̃h(s)
def
= 1

2

(
F̃(s)− F̃ι1(s)

)
, g̃h(s)

def
= 1

2

(
G̃(s)− G̃ι2(s)

)
.

1. The pair (h1(s), h2(s)) = ( f̃ (s), g̃(s)) satisfies the inhomogeneous equation

γ̃1(s)h1(s) + γ̃2(s)h2(s) + ω = 0 with hι1
1 = h1 and hι2

2 = h2. (Eγ̃1,γ̃2,ω)

2. The pair (h1(s), h2(s)) = ( f̃h(s), g̃h(s)) satisfies the homogeneous equation

γ̃1(s)h1(s) + γ̃2(s)h2(s) = 0 with hι1
1 = −h1 and hι2

2 = −h2. (E′
γ̃1,γ̃2

)

We refer to equations (Eγ̃1,γ̃2,ω) and (E′
γ̃1,γ̃2

) as the decoupling equations.

Proof. Assuming that F̃ and G̃ belong to C(s), we first find a relation between F̃ι1 and
G̃ι2 (composition with ι1 and ι2 is always well defined for rational functions). Recall
that F̃( s

q ) = F̃ι1ι2 , hence we may rewrite the q-difference equation (6.1.11) into(
γ̃(s)F̃ι1(s) +

ω

γ̃2(s)

)ι2

= γ̃(s)F̃(s) +
ω

γ̃2(s)
,

hence by applying ι2 on both sides we obtain

γ̃(s)F̃ι1(s) +
ω

γ̃2(s)
=

(
γ̃(s)F̃(s) +

ω

γ̃2(s)

)ι2

. (6.2.1)

Moreover, the linear relation (6.1.12) between F̃ and G̃ can be rewritten as

−G̃(s) = γ̃(s)F̃(s) +
ω

γ̃2(s)
,

so by applying ι2 we obtain

−G̃ι2(s) =
(

γ̃(s)F̃(s) +
ω

γ̃2(s)

)ι2

. (6.2.2)

Eliminating the right-hand sides between (6.2.1) and (6.2.2), we extract the following
relation between F̃ι1 and G̃ι2 :

γ̃1(s)F̃ι1(s) + γ̃2(s)G̃ι2(s) + ω = 0. (6.2.3)
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We copy for convenience Equation (6.1.12):

γ̃1(s)F̃(s) + γ̃2(s)G̃(s) + ω = 0. (6.2.4)

Taking the mean of equations (6.2.3) and (6.2.4), one obtains (Eγ̃1,γ̃2,ω). Taking half
the difference of equations (6.2.3) and (6.2.4), one obtains (E′

γ̃1,γ̃2
). Indeed, ι1 is an

involution, hence (F̃ι1)ι1 = F̃, so f̃ ι1 = f̃ and f̃ ι1
h = − f̃h. The same argument applies

to g̃ and g̃h.

Remark 6.2.3. From Proposition 6.1.2, the condition f̃ ι1 = f̃ is equivalent to the condition
that there exists f (x) ∈ C(x) such that f̃ (s) = f (x(s)). Likewise, the condition f̃ ι1 = − f̃
asserts that there exists f̃ (s)2 = f (x(s)) for some f , but that f̃ (s) itself is not a function
of x(s). This explains the qualification of decoupling equations: they relate functions in
two different variables. ■

We will see in the remaining of the section how the study of the rational solutions
of the decoupling equations gives information on the series Q(x, y), either for showing
its non-D-algebraicity in x and y, or for obtaining an explicit algebraic expression.

6.2.1 Showing non D-algebraicity

Our argument for showing non-D-algebraicity will rely on the fact that we know
that the solution Q(x, y) is a generating function of walks in the quadrant, and thus we
may control the expansion of Q(x, 0) and Q(0, y) around 0.

Lemma 6.2.4. Let h be a fraction of C(s), and assume that the poles of h belong to {0, ∞}. If
hι1 = h, then there exists a Laurent polynomial H(x) ∈ C[1/x] such that H(x(s)) = h(s).
Analogously, if hι2 = h, then there exists a Laurent polynomial H(y) ∈ C[1/y] such that
H(y(s)) = h(s).

Proof. Let h ∈ C(s) be a function whose poles belong to {0, ∞}, such that hι1 = h.
The extension C(s)/C(x(s)) being Galois of Galois group generated by ι1 by Proposi-
tion 6.1.1, there exists a fraction H(x) ∈ C(x) such that H(x(s)) = h(s). Write H(x) =
U(x)
V(x) with U and V relatively prime polynomials, V monic, and let u(s) def

= U(x(s)),

v(s) def
= V(x(s)). We write the polar divisor (h)∞ of h in two different ways.

First, we have by the assumption that (h)∞ = p · 0 + q · ∞ for some nonnegative
integers p and q. As ι1(0) = ∞ and hι1 = h, we conclude that p = q, so by Proposi-
tion 6.1.1,

(h)∞ = p · 0 + p · ∞ = p · (x(s))0. (6.2.5)

Moreover, as u and v are polynomials in x(s), we have that (u)∞ = degx U(x) ·
(x(s))∞. and (v)∞ = degx V(x) · (x(s))∞. We also have that since the polynomials U(x)
and V(x) are relatively prime, Bézout theorem implies the existence of some relation

U′(x)U(x) + V ′(x)V(x) = 1
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for U′(x), V ′(x) ∈ C[x]. Thus, by composing the relation with x(s), we see that

u′(s)u(s) + v′(s)v(s) = 1.

For s0 a pole of x(s), U(x(s0)) and V(x(s0)) are both nonzero since U(x) and V(x) are
polynomials. For s0 not a pole of x(s), then s0 is not a pole of u′, v′, u, v, and we see that
it cannot be a zero of both u(s) and v(s). Thus, since

(h) = (u)0 + (v)∞ − (u)∞ − (v)0

= (u)0 − (v)0 + (degx V(x)− degx U(x)) · (x(s))∞

and the zeros of u and v don’t compensate, we deduce that

(h)∞ = (v)0 − min(degx V(x)− degx U(x), 0) · (x(s))∞. (6.2.6)

Therefore, equating (6.2.5) and (6.2.6), we obtain the conditions

(1) degx V(x)− degx U(x) ≥ 0 (2) (v)0 = p · (x(s))0.

Consider w(s) def
= v(s)

x(s)p . Using (2), we compute its divisor as

(w) = (v)0 − (v)∞ − p · (x(s))0 + p · (x(s))∞

= (p − degx V(x)) · (x(s))∞.

Since deg (w) = 0 (Proposition 2.1.4), we deduce that 2 · (p − degx V(x)) = 0, and thus
(w) = 0, which implies that w is a constant (Proposition 2.1.4). As V(x) is monic, this
implies that V(x) = xp. Moreover condition (1) implies that degx U(x) ≤ degx V(x) =
p. We thus conclude that H(x) = U(x)

V(x) belongs to C[1/x]. The proof for hι2 = h is
similar.

Lemma 6.2.5. Assume that the following two conditions hold:

(1) For any pair of solutions (h1, h2) of (Eγ̃1,γ̃2,ω), then either the poles of h1 are in {0, ∞} or
the poles of h2 are in {0, ∞}.

(2) The only solution of (E′
γ̃1,γ̃2

) is (0, 0).

Then Q(x, y) is non x-D-algebraic nor y-D-algebraic.

Proof. Assume that Q(x, y) is x-D-algebraic or y-D-algebraic, then by Proposition 6.1.5
the functions F̃ and G̃ are rational. Hence, by Lemma 6.2.2, the pair ( f̃ , g̃) satisfies (Eγ̃1,γ̃2,ω)
and the pair ( f̃h, g̃h) satisfies (E′

γ̃1,γ̃2
), with F̃ = f̃ + f̃h and G̃ = g̃ + g̃h.

From (1), assume without loss of generality that the poles of f̃ are in the set {0, ∞}.
Then by Lemma 6.2.4 applied to f̃ , there exists a Laurent polynomial f (x) ∈ C[1/x]

such that f (x(s)) = f̃ (s). Denote by −d the valuation of f (x), so that P(x) def
= xd f (x)
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is a polynomial of degree at most d. From (2), we have that f̃h = 0, hence F̃(s) = f̃ (s).
Therefore, as F̃(s) is a continuation of qF(s), we have for s ∈ V the equation

x(s)Q(x(s), 0)− f (x(s)) = 0.

The function xQ(x, 0)− f (x) is meromorphic at x = 0, hence by Lemma 6.1.6 it is zero,
so we have the equation

xd+1Q(x, 0) = P(x).

But we have that Q(x, 0) = 1 +O(x), which is a contradiction because P(x) has degree
at most d.

6.2.2 Retrieving D-algebraic solutions

In the remaining cases, we are able to prove that Q(x, y) is D-algebraic by lifting ra-
tional solutions to the decoupling equations (Eγ̃1,γ̃2,ω) and (E′

γ̃1,γ̃2
) to algebraic solutions

of (6.1.1).

Lemma 6.2.6. Assume that ω = 0, and that (h1, h2) is a nonzero solution to (Eγ̃1,γ̃2,ω) or

(E′
γ̃1,γ̃2

). Then the function h2 satisfies the identity hσ
2 (s)

h2(s)
= γ̃ι1 (s)

γ̃(s) .

Proof. Let (h1, h2) be a pair solution to either (Eγ̃1,γ̃2,ω) or (E′
γ̃1,γ̃2

). In both cases, there
exists some ε ∈ {−1, 1} such that hι1

1 (s) = εh1(s) and hι2
2 (s) = εh2(s).

Analogously to what was done in the first section, we start from the identity

γ̃(s)h1(s) = −h2(s). (6.2.7)

Applying ι1 on both sides of the equation and using the relation hι1
1 = εh1, we obtain

εγ̃ι1(s)h1(s) = −hι1
2 (s). (6.2.8)

Eliminating h1(s) between (6.2.7) and (6.2.8), and using the identity hι1
2 (s) = εhι2 ι1

2 (s) =
εhσ

2 (s) shows the claim.

Lemma 6.2.7. Assume that ω = 0.

1. If (Eγ̃1,γ̃2,ω) admits a nonzero solution (h1, h2) ∈ C(s), then Q(x, y) is rational in x and
y (for the fixed t of Proposition 6.1.4). More precisely, there exist H1(z), H2(z) ∈ C(z)
such that H1(x(s)) = h1(s) and H2(y(s)) = h2(s), and λ ∈ C such that

xQ(x, 0) = λH1(x), yQ(0, y) = λH2(y).

2. If (E′
γ̃1,γ̃2

) admits a nonzero solution (h1, h2) ∈ C(s), then Q(x, y) is algebraic over
C(x, y) (for the fixed t of Proposition 6.1.4). More precisely, there exist H1(z), H2(z) ∈
C(z) such that H1(x(s)) = h1(s)2 and H2(y(s)) = h2(s)2, and λ ∈ C such that

xQ(x, 0) = ±λ
√

H1(x), yQ(0, y) = ±λ
√

H2(y).
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Proof. Let (h1, h2) be a nonzero solution to (Eγ̃1,γ̃2,ω) or (E′
γ̃1,γ̃2

). By Lemma 6.2.6, the
function h2(s) satisfies

hσ
2 (s)

h2(s)
=

γ̃ι1(s)
γ̃(s)

. (6.2.9)

Now, considering the function H(s) def
= G̃(s)

h2(s)
(recall that h2 is nonzero), we see by com-

bining equations (6.2.9) and (6.1.13) that H(qs) = H(s). The function H(s) is meromor-
phic on C and |q| ̸= 1, hence H(s) is a constant. Therefore, there exists λ ∈ C such that
G̃(s) = λh2(s). By Equation (6.1.12), we also deduce that F̃(s) = λh1(s).

We can now prove the two cases of the lemma:
1. If (h1(s), h2(s)) is a solution to (Eγ̃1,γ̃2,ω), then by Proposition 6.1.2, there exist

H1(x) ∈ C(x) and H2(y) ∈ C(y) such that H1(x(s)) = h1(s) and H2(y(s)) =
h2(s). Therefore, x(s)Q(x(s), 0) = λH1(x(s)), and y(s)Q(0, y(s)) = λH2(y(s)) for
all s in V. Thus, as these functions are meromorphic at s = 0, Proposition 6.1.6
yields xQ(x, 0) = λH1(x) and yQ(0, y) = λH2(y).

2. If (h1(s), h2(s)) is a solution to (E′
γ̃1,γ̃2

), then (h1(s)2)ι1 = h1(s)2 and (h2(s)2)ι2 =

h2(s)2. By Proposition 6.1.2, there exist H1(x) ∈ C(x) and H2(y) ∈ C(y) such
that H1(x(s)) = h1(s)2 and H2(y(s)) = h2(s)2. Therefore, x(s)2Q(x(s), 0)2 =
λ2H1(x(s)) and y(s)2Q(0, y(s)2 = λ2H2(y(s)) for all s in V. Thus, as these func-
tions are meromorphic at s = 0, Proposition 6.1.6 yields x2Q(x, 0)2 = λ2H1(x)
and y2Q(0, y)2 = λ2H2(y).

Remark 6.2.8. 1. The value of λ can be found by evaluating H1(x) at x = 0 (resp.
H2(y) at y = 0), and using the fact that Q(0, 0) = 1.

2. Note that the expressions for H1(x) and H2(y) depend a priori on the value of the
real number t. However, in all the algebraic cases, the fractions H1(z) and H2(z)
will be fixed fractions of Q(di,j, a, b, t, z) analytic at t = 0. Thus, we may lift the
solutions for Q(x, 0) and Q(0, y) as formal power series in t.

■

The classification will go as follows: for every model and parameters, we will show
that we are either in the case of application of Lemma 6.2.5 or Lemma 6.2.7, by studying
the decoupling equations (Eγ̃1,γ̃2,ω) and (E′

γ̃1,γ̃2
).

6.3 Decoupling equations

In the previous section, we reduced the classification to the study of two decoupling
equations (Eγ̃1,γ̃2,ω) and (E′

γ̃1,γ̃2
). According to the previously designed strategy, we will

investigate both equations separately.

6.3.1 Homogeneous equation

We first handle the homogeneous equation (E′
γ̃1,γ̃2

), which corresponds to the stan-
dard case of a multiplicative decoupling (like for instance those in [BEFHR25]), in this case
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of the fraction γ̃
def
= γ̃1/γ̃2. We want to determine in which cases this equation admits

rational solutions. When they exist, we provide them explicitly. Otherwise, we provide
two distinct arguments to show the non-existence of rational solutions. The first one is
standard, and revolves around a process called pole propagation.

Lemma 6.3.1. Let u(s) be in C(s). Assume that there exists a pole (resp. zero) P ̸= {0, ∞} of
u(s) such that for all n in Z the point σnP is never a zero (resp. pole) of u(s).

Then there is no nonzero h(s) ∈ C(s) such that hσ(s) = u(s)h(s).

Proof. The result is elementary, see for instance [HS08, Lemma 3.5] for a proof.

We apply this lemma to the homogeneous equation (E′
γ̃1,γ̃2

).

Corollary 6.3.2. Assume that there exists P ̸= {0, ∞} a pole (resp. zero) of γ̃ι1

γ̃ such that for

all n in Z the point σnP is never a zero (resp. pole) of γ̃ι1

γ̃ . Then the equation (E′
γ̃1,γ̃2

) has no
nonzero rational solution.

Proof. Assume that (h1, h2) is a nonzero solution to (E′
γ̃1,γ̃2

). Then by Lemma 6.2.6, the

function h2(s) satisfies the equation hσ
2 (s)

h2(s)
= γ̃ι1 (s)

γ̃(s) , which by assumption and Lemma 6.3.1
has no nonzero rational solution, a contradiction.

Unfortunately, this pole propagation technique does not discard all cases where the
homogeneous solution has no solution. Mainly, it may happen that there exists a pair
of fractions (h1, h2) satisfying the linear relation with h′1

ι1(s) = ±h′1(s) and h′2
ι2(s) =

±h′2(s) (we call such relaxed solutions signed solutions). In this case, Corollary 6.3.2 will
not apply. However, when such solution with “wrong” signs for either h′1

ι1(s)/h′1(s)
or h′2

ι2(s)/h′2(s) exists, we show that (E′
γ̃1,γ̃2

) has no nonzero rational solution (with the
“right” signs).

Lemma 6.3.3. Let (h′1, h′2) be a nonzero pair satisfying the relation γ̃1(s)h′1(s)+ γ̃2(s)h′2(s) =
0 with (h′1)

ι1 = ±h′1 and (h′2)
ι2 = ±h′2. If (h′1)

ι1 = h′1 or (h′2)
ι2 = h′2, then Equation (E′

γ̃1,γ̃2
)

has no nontrivial rational solution.

Proof. Assume that (h′1, h′2) is such a pair, and let (h1, h2) be a pair of rational solutions
to (E′

γ̃1,γ̃2
). Then we have the equation

h1

h′1
=

h2

h′2
=: u.

Now, by the symmetries of the h1,2 and h′1,2, we have that (u2)ι1 = (u2)ι2 = u2. There-
fore, the fraction u2 is fixed by σ, hence u2 ∈ C, so u ∈ C.

Assuming that (h′1)
ι1 = h′1, we obtain that hι1

1 = (uh′1)
ι1 = uh′1 = h1. As h1 satisfies

also hι1
1 = −h1, we deduce that h1 = 0, and thus that h2 = 0.

Similarly, assuming that (h′2)
ι2 = h′2, we obtain that (h1, h2) = (0, 0).
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6.3.2 Inhomogeneous equation

To handle the inhomogeneous equation, we will proceed as in Lemma 6.3.1 by prov-
ing a propagation lemma adapted to (Eγ̃1,γ̃2,ω) (namely Lemma 6.3.6 below). Unlike the
previous case, this lemma will only restrict the possible poles of h1 and h2 to a finite set
of points of P1, for (h1, h2) a solution. In most cases, we will be able to show that one of
h1,2 must have its poles restricted to the set {0, ∞}, which is one of the requirements of
Lemma 6.2.5 which shows non-D-algebraicity of Q(x, y) in x and y.

Before we state and prove the propagation lemma for the inhomogeneous equation,
we recall two easy facts on poles of rational maps on a curve. The first fact concerns the
relations between the poles of two functions related by a linear equation.

Lemma 6.3.4. Assume that (h1, h2) ∈ C(s)2 satisfies the relation u1h1 + u2h2 + u3 = 0 for
some u1, u2, u3 in C(s). If P is a pole of h1 not in {(u1)0, (u2)∞, (u3)∞}, then it is a pole of h2.

Proof. Assume that P is a pole of h1(s). Since it is not a zero of u1(s), it is a pole of
u1(s)h1(s). By the relation, P is a pole of u2(s)h2(s) + u3(s). Since P is not a pole of
u3(s), it is a pole of u2(s)h2(s), and because it is not a pole of u2(s), this implies that P
is a pole of h2(s).

The second standard fact concerns the poles of a function stable by automorphisms.

Lemma 6.3.5. Let h be in C(s), and τ an automorphism of P1. If P is a pole (resp. zero) of h,
then τ−1P is a pole (resp. zero) of hτ. In particular, if hτ = λh for some nonzero λ ∈ C, then
the set of poles (resp. zeros) of h is stable under the action of τ.

Proof. Assume that P given by s0 ∈ P1 is a zero of h. Then hτ(τ−1(s0)) = h(τ(τ−1(s0))) =
h(s0) = 0.

We now state the announced propagation lemma, specific to (Eγ̃1,γ̃2,ω). It depends
on the divisors of the coefficients of this equation. Recall from Proposition 6.1.3 that

(γ̃1) = P1 + P2 − 0 − ∞, (γ̃2) = P3 + P4 − 0 − ∞; (⋆)

and that ω = 1 − A − B is a constant. We define four finite sets L−
1 ,L+

1 ,L−
2 ,L+

2 ⊂ P1

as follows:

L−
1

def
= {P1, P2, ι2P3, ι2P4}, L+

1
def
= ι1L−

1 = {ι1P1, ι1P2, σ−1P3, σ−1P4},

L−
2

def
= {σP1, σP2, ι2P3, ι2P4}, L+

2
def
= ι2L+

2 = {ι1P1, ι1P2, P3, P4}.
(6.3.1)

We call the elements of the sets L+,−
1,2 the critical points of equation (Eγ̃1,γ̃2,ω).

Lemma 6.3.6 (Pole propagation). Let (h1, h2) ∈ C(s)2 be a solution to (Eγ̃1,γ̃2,ω).
Let P be a pole of h1 distinct from 0, ∞.

(i) If P ̸∈ L−
1 , then σ−1P is a pole of h1.
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(ii) If P ̸∈ L+
1 , then σP is a pole of h1.

Let P be a pole of h2 distinct from 0, ∞.

(i’) If P ̸∈ L−
2 , then σ−1P is a pole of h2.

(ii’) If P ̸∈ L+
2 , then σP is a pole of h2.

Proof. We prove (i). Let P be a pole of h1 distinct from 0, ∞ and not in L−
1 . Because

P ̸∈ {P1, P2, 0, ∞} = {(γ̃1)0, (γ̃2)∞, (ω)∞} (see (⋆) above), this implies by Lemma 6.3.4
that P is also a pole of h2. Now, hι2

2 = h2, hence ι2P is a pole of h2 by Lemma 6.3.5.
Now, P ̸∈ {ι2P3, ι2P4, 0, ∞} hence ι2P ̸∈ {P3, P4, 0, ∞} = {(γ̃2)0, (γ̃1)∞, (ω)∞}, so by
Lemma 6.3.4 the point ι2P is a pole of h1. Finally, hι1

1 = h1, hence σ−1P = ι1(ι2P) is a
pole of h1.

We now prove (ii). Let P be a pole of h1 distinct from 0, ∞ and not in L+
1 . Since P ̸∈

L+
1 = ι1L−

1 , then ι1P ̸∈ L−
1 , and ι1P ̸= 0, ∞. By (i), this implies that σ−1(ι1P) = ι1(σP)

is a pole of h1. As hι1
1 = h1, this implies that σP is a pole of h1 by Lemma 6.3.5.

The proofs of (i′) and (ii′) are similar.

Using the critical points, we may thus describe the possible poles of rational solu-
tions (h1, h2) to (Eγ̃1,γ̃2,ω).

Lemma 6.3.7. Let (h1, h2) ∈ C(s)2 be a solution to (Eγ̃1,γ̃2,ω). If P is a pole of h1 distinct
from 0 or ∞, then there exist two integers m, n ≥ 0 such that σ−mP ∈ L−

1 and σnP ∈ L+
1 .

Likewise, if P is a pole of h2 distinct from 0 or ∞, then there exist two integers m, n ≥ 0 such
that σ−mP ∈ L−

2 and σnP ∈ L+
2 .

Proof. Assume for the sake of contradiction that P ̸= 0, ∞ is a pole of h1 satisfying
σnP ̸∈ L+

1 for all n ≥ 0. Then by induction and Lemma 6.3.6, we show that σnP is a
pole of h1 for all n ≥ 0. Since P is distinct from 0 or ∞, the orbit (σnP)n≥0 is infinite,
hence the fraction h1 has an infinite number of poles, a contradiction. The other points
are proved in a similar fashion.

6.3.3 σ-distance

Thanks to pole propagation, Lemma 6.3.7 allows us to locate the possible poles of h1
and h2 for a rational solution (h1, h2) to (Eγ̃1,γ̃2,ω). Similarly, Lemma 6.3.1 gives a suffi-
cient condition for proving that (E′

γ̃1,γ̃2
) has no nonzero rational solution (h′1, h′2). These

two lemmas thus give conditions to the existence of solutions to decoupling equations
based on the relations between the points of the finite sets L±

1,2. These relations are
captured by a signed distance called the σ-distance, that we introduce to compare two
points of P1 with respect to the action of the group < σ >. This will give us numerical
data from which we will conduct the classification.

Definition/Proposition 6.3.8. Let P and P′ be two points of P1 distinct from 0 and ∞.
We define the σ-distance δ(P, P′) of the points P and P′ as follows:

— If there exists an integer n ∈ Z such that σnP = P′, then n is unique, and we
define δ(P, P′) = n.
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— Otherwise, if no such integer exists, we define δ(P, P′) = ⊥.

Proof. We just need to show the uniqueness. Assume that σnP = σmP for two integers m
and n. Then σn−mP = P, which is possible if and only if if n = m because 0 and ∞ are
the only periodic points of the action of σ on P1 (indeed, if qns = s with n ≥ 1, then
s = 0 or s = ∞, for qn ̸= 1).

The σ-distance satisfies the standard arithmetic properties that one would expect
from a signed distance.

Proposition 6.3.9. With the convention that n +⊥ = ⊥ for every integer n, and that ⊥ =
−⊥, the σ-distance satisfies the following properties for points P, P′ and P′′ distinct from 0 or
∞:

(i) δ(P, P′) = −δ(P′, P),

(ii) δ(P, P′) + δ(P′, P′′) = δ(P, P′′) if δ(P, P′) and δ(P′, P′′) are finite,

(iii) δ(P, σ(P′)) = δ(P, P′) + 1,

(iv) δ(P, P′) = δ(ι1P′, ι1P) = δ(ι2P′, ι2P).

Proof. The proofs of (i), (ii) and (iii) are straightforward, hence we focus on the proof of
(iv). Assume first that σnP = P′ for some integer n. Recall that σ = ι2ι1 with ι21 = ι22 =
id, so it is easy to see that ι1σn = σ−nι1. Thus, σ−n(ι1P) = ι1(σ

nP) = ι1P′, which implies
that δ(ι1P, ι1P′) is finite, being equal to −n = −δ(P, P′) = δ(P′, P). The application ι1 is
an involution, thus if δ(P, P′) = ⊥, then we also have δ(ι1P, ι1P′) = ⊥.

We are going to determine the values of δ(P, P′) for all (P, P′) ∈ L−
1 × L+

1 and
(P, P′) ∈ L−

2 ×L+
2 . These values are compiled respectively in the matrices M1 and M2

in M4(Z ∪ {⊥}), the lines (L−
1,2) and columns (L+

1,2) being ordered as in (6.3.1). More
precisely, their entries are organized as follows:

M1
def
=


δ(P1, ι1P1) δ(P1, ι1P2) δ(P1, σ−1P3) δ(P1, σ−1P4)
δ(P2, ι1P1) δ(P2, ι1P2) δ(P2, σ−1P3) δ(P2, σ−1P4)

δ(ι2P3, ι1P1) δ(ι2P3, ι1P2) δ(ι2P3, σ−1P3) δ(ι2P3, σ−1P4)
δ(ι2P4, ι1P1) δ(ι2P4, ι1P2) δ(ι2P4, σ−1P3) δ(ι2P4, σ−1P4)

 ,

M2
def
=


δ(σP1, ι1P1) δ(σP1, ι1P2) δ(σP1, P3) δ(σP1, P4)
δ(σP2, ι1P1) δ(σP2, ι1P2) δ(σP2, P3) δ(σP2, P4)
δ(ι2P3, ι1P1) δ(ι2P3, ι1P2) δ(ι2P3, P3) δ(ι2P3, P4)
δ(ι2P4, ι1P1) δ(ι2P4, ι1P2) δ(ι2P4, P3) δ(ι2P4, P4)

 .

(6.3.2)

Proposition 6.3.10. The matrices M1 and M2 satisfy the following relations:

(i) MT
1 = M1 and MT

2 = M2,

(ii) M2 = M1 +

(
−J2 0

0 J2

)
where J2 =

(
1 1
1 1

)
.

Proof. These are straightforward applications of Proposition 6.3.9.
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Thanks to the above proposition, it is only required to compute the σ-distances of
10 pairs of points, namely those above the diagonal of M1. Note that the sets L±

1,2, and
thus the matrix M1 depend on the set of steps Si of the model and weights di,j, A and
B. We finish this subsection by giving two lemmas to exploit these matrices.

Lemma 6.3.11. Let (h1, h2) be a pair of rational solutions to (Eγ̃1,γ̃2,ω).
(i) If all the entries of M1 are in Z− ∪ {⊥}, then the poles of h1(s) belong to {0, ∞}.

(ii) If all the entries of M2 are in Z− ∪ {⊥}, then the poles of h2(s) belong to {0, ∞}.

Proof. Let (h1, h2) be a pair of rational solutions to (Eγ̃1,γ̃2,ω). We prove (i). Assume that
all the entries of M1 are in Z− ∪ {⊥}. If P ̸= {0, ∞} is a pole of h1, then by Lemma 6.3.7,
there exist m, n ≥ 0 such that σ−mP =: Q− ∈ L−

1 and σnP =: Q+ ∈ L+
1 . But then by

(ii) of Proposition 6.3.9, one has δ(Q−, Q+) = δ(Q−, P) + δ(P, Q+) = n + m ≥ 0, a
contradiction since δ(Q−, Q+) is an entry of M1. Thus, h1 has no poles besides 0 and ∞.
The proof of point (ii) is similar.

Lemma 6.3.12. If one of the rows of M1 consists of ⊥’s only, then (E′
γ̃1,γ̃2

) has no nonzero
rational solution.

Proof. From Proposition 6.1.3, we may write the divisor of γ̃ι1 /γ̃ as

(γ̃ι1 /γ̃) = ι1P1 + ι1P2 + P3 + P4 − P1 − P2 − ι1P3 − ι1P4.

Assume that there exists Q− ∈ L−
1 such that for all Q+ ∈ L+

1 one has δ(Q−, Q+) = ⊥
(Q− labels the row M1 consisting of ⊥’s only). Then there exists an integer k such

that Q′ def
= σkQ− is a pole of γ̃ι1 /γ̃, namely k = 0 for Q− ∈ {P1, P2} or k = −1 for

Q− ∈ {ι2P3, ι2P4}.
— The point Q′ is a pole of γ̃ι1 /γ̃.

— The point σnQ′ is never a zero of γ̃ι1 /γ̃. Indeed, if it were the case, then Q+ def
=

σmQ′ would belong to L+
1 , either for m = n if σnQ′ ∈ {ι1P1, ι1P2}, or m = n − 1 if

σnQ′ ∈ {P3, P4}. The point (iii) of Proposition 6.3.9 would then imply that

δ(Q−, Q+) = δ(Q−, Q′) + δ(Q′, Q+) = k + m,

while the row of M1 corresponding to Q− consisting of ⊥’s only implies that
δ(Q−, Q+) = ⊥, a contradiction.

Therefore by Corollary 6.3.2, (E′
γ̃1,γ̃2

) has no nonzero rational solution.

6.4 Computing the σ-distance

Denote by F the field Q(di,j, a, b). In this section, we describe a heuristic to decide
given two points P and P′ of P1 if there exists an integer n such that σn(P) = P′.
In other words, for two points P and P′ of P1, the goal is to compute the σ-distance
δ(P, P′) of Definition 6.3.8. When we restrict to the points that originate from zeros of
the fractions γ̃1 and γ̃2, the σ-distance is computable. The main argument used here,
and already exploited for instance in [BM10], is based on valuations.
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Definition/Proposition 6.4.1. There exists an embedding (a F-algebra homomorphism)
ψ : F(t) −→ C f rac((T)) where C f rac((T)) is the field of formal Puiseux series over C in
the formal variable T. * We fix once and for all this embedding ψ. As a result, for any
u ∈ F(t), we define its valuation v(u) to be the valuation in the variable T of ψ(u) (the
valuation of 0 being +∞).

Proof. Consider the embedding ψ5 : F(t) −→ C f rac((T)) defined as the composition

F(t) F(T) C(T) C((T)) C f rac((T))
ψ1 ψ2 ψ3 ψ4

where the embedding ψ1 : t 7→ T is the isomorphism between F(t) and F(T) as t is
transcendental over F; the embedding ψ2 is the map induced by the inclusion F ⊂ C;
the embedding ψ3 is the map from C(T) into the field of Laurent series C((T)); and
the embedding ψ4 is an arbitrary embedding of C((T)) into C f rac((T)) its algebraic clo-
sure (this follows from the Newton-Puiseux theorem since C is algebraically closed of
characteristic zero [Sta24, Th. 6.1.5]). As the field C f rac((T)) is algebraically closed, the
embedding ψ5 admits an extension ψ to an embedding of F(t) into C f rac((T)) ([Lan02,
Th. V.2.8]).

Definition 6.4.2. Let P ∈ P1 \ {0, ∞} such that ϕ(P) = ([1 : x1], [1 : y1]) ∈ P1 ×P1 with

x1, y1 ∈ F(t). Then define the bivaluation of P to be v(P) def
= (v(x1), v(y1)).

Lemma 6.4.3. Let H(x, y) ∈ F(t)(x, y) be a fraction such that h(s) def
= H(x(s), y(s)) ∈ C(s)

is well defined. If P ∈ P1 \ {0, ∞} is a pole or zero of h, then the point ϕ(P) = ([1 : x1], [1 :
y1]) ∈ Et ⊂ P1 × P1 is distinct from Ω = (0, 0), and x1 and y1 are algebraic over F(t).

Proof. Let s0 be the coordinate in P1 of P. By assumption, s0 ̸= 0, ∞, hence Proposi-
tion 6.1.1 yields x(s0) ̸= 0 and y(s0) ̸= 0. Moreover, the functions x(s) and y(s) belong
to F(t)(s). Hence, h(s) ∈ F(t)(s), thus if s0 is a pole or zero of h(s), then s0 belongs to
F(t). Therefore, so do x1 = 1

x(s0)
and y1 = 1

y(s0)
.

The above lemma allows us to talk about the bivaluations of the zeros of γ̃1 and γ̃2
(the points Pi defined in Proposition 6.1.3). Now, recall the expressions for ι1 and ι2 on
Et ⊂ P1 × P1 of (6.1.4) and (6.1.5):

ι1([1 : x1], [1 : y1]) =

(
[1 : x1],

[
1 :

d−1,1x2
1 + d0,1x1 + d1,1

d1,−1y1

])
,

ι2([1 : x1], [1 : y1]) =

([
1 :

d1,−1y2
1 + d1,0y1 + d1,1

d−1,1x1

]
, [1 : y1]

)
.

(6.4.1)

Hence, for a point P ∈ P1 \ {0, ∞}, the homogeneous coordinates at infinity of
ϕ(ι1P) = ι1(ϕ(P)) and ϕ(ι2P) = ι2(ϕ(P)) (Proposition 6.1.1) are explicit rational func-
tions in the coordinates of ϕ(P). Hence, if the coordinates x1 and y1 of ϕ(P) are in F(t),

*. Although the real number t is transcendental over F, we do not directly consider the field of formal
Puiseux series in t to avoid conflicts of notation with the usual sum of complex numbers.
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then so are the coordinates of ϕ(ι1P) and ϕ(ι2P). Thus, all the points of the sets L±
1,2

defined in (6.3.1) admit a bivaluation. This raises the possibility of keeping track of the
successive bivaluations of the points σn(P) for all integers n and P ∈ L±

1,2. It turns out
that in most cases, the bivaluation of σ(P) depends only on the bivaluation of P.

Lemma 6.4.4. Let P be in P1 with ϕ(P) = ([1 : x1], [1 : y1]) and x1, y1 ∈ F(t), and let
v(P) = (i, j).

(1) If i < 0 then v(ι1(P)) = (i, 2i − j).

(2) If j < 0 then v(ι2(P)) = (2j − i, j).

Proof. We show (1). Write ι1([1 : x1], [1 : y1]) = ([1 : x1], [1 : y′1]) (as read in (6.4.1)). If
v(x1) < 0, then since d−1,1 ̸= 0, we have v(d−1,1x2

1) = 2v(x1) = 2i and v(d0,1x1 + d1,1) ≥
v(x1) > 2v(x1) = 2i. Thus, the numerator of y′1 has valuation 2i. Moreover, since
d1,−1 ̸= 0, we compute the valuation of the denominator of y′1 as v(d1,−1y1) = v(y1) = j,
hence the result. The proof of (2) is similar.

Lemma 6.4.5. Let P ∈ P1 with ϕ(P) = ([1 : x1], [1 : y1]) and x1, y1 ∈ F(t), and let
v(P) = (i, j) and δ = |i − j|.

(1) If i < j < 0 then v(σk(P)) = (i − 2δk, j − 2δk) for all k ≥ 0,

(2) If j < i < 0 then v(σ−k(P)) = (i − 2δk, j − 2δk) for all k ≥ 0.

Proof. We prove (1). Assume that ϕ(P) = ([1 : x1], [1 : y1]) with x1, y1 ∈ F(t) and

(i, j) def
= v(P) < 0. We first compute the bivaluation of ι1P. As i < 0, Lemma 6.4.4

asserts that v(ι1(P)) is completely determined by i and j. Thus,

v(ι1P) = (i, 2i − j) = (i, j + 2(i − j)) = (i, j − 2δ) since i < j.

As j − 2δ < 0, the bivaluation of σ(P) = ι2(ι1P) is also completely determined by i and
j by Lemma 6.4.4, and thus

v(σP) = (2(j − 2δ)− i, j − 2δ) = (3i − 2j, j − 2δ) = (i − 2δ, j − 2δ).

We thus proved that if v(P) = (i, j) with i < j < 0, then v(σP) = (i − 2δ, j − 2δ). An
easy induction completes the proof. The proof of the second point is similar.

As the classification of the nature of Q(x, y) given a weighted model depends on the
matrices M1 and M2 defined in (6.3.2), we need to compute δ(Q−, Q+) for two points
Q− ∈ L−

1 and Q+ ∈ L+
1 for these weights di,j, a, b. Thus, we are able to determine

the tables of Section 6.4. Note that from Lemma 6.4.3, both points Q− and Q+ have a
bivaluation.

1. Compute σnQ− for n ∈ {−3,−2,−1, 0, 1}. It happens in all cases (when Q− ∈
L−

1 ) that v(σ−2(Q−)) = (i, j) with j < i < 0 and v(σ2(Q−)) = (i, j) with i < j < 0.
Thus, Lemma 6.4.5 allows us to determine the sequence of bivaluations of σn(Q−)
for all n ∈ Z.
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2. Determine the bivaluation (i′, j′) of the point Q+.
— If one point of the orbit of Q− has bivaluation (i′, j′) (which we may de-

cide, see the above point), then there are a finite number of n such that
v(σn(Q−)) = (i′, j′). For each of these n, check if σn(Q−) = Q+. If one
of these n works, then δ(Q−, Q+) = n.

— Otherwise, if the bivaluation (i′, j′) does not appear in the orbit of Q− or no
n works, then δ(Q−, Q+) = ⊥.

Of course, the space of parameters a, b, di,j is infinite. Hence, the actual procedure
adds the following level of complexity: the bivaluation of a point Q depends on an
algebraic condition on the parameters. Thus, we need to explore all the possible bi-
valuations according to these parameters (for the points Q− and Q+). The core of the
procedure stays the same. Instead of giving a dry algorithm, we expand below an ex-
ample.

Example 6.4.6. We consider the set of steps S1 of Figure 6.0.1. In this example, we show
how to construct the entry δ(P2, ι1P2) of Table 6.4.1, depending on the weights d0,1, d1,−1,
d−1,1, A and B.

1. The first step consists in computing the bivaluation of P2 depending on the weights
di,j, A and B. We first compute the coordinates of ϕ(P2) for generic di,j, A and B:

ϕ(P2) =

([
1 :

−d0,1d1,−1t2

d1,−1d−1,1t2 + A2 − A

]
,
[

1 :
−Ad0,1t

d1,−1d−1,1t2 + A2 − A

])
.

The Laurent series expansions of the coordinates of P2 at t = 0 are as follows

ϕ(P2) =

([
1 :

−d0,1d1,−1t2

A(A − 1)
+ O(t3)

]
,
[

1 :
−Ad0,1t

A(A − 1)
+ O(t2)

])
.

We thus notice that when A ̸= 0, the bivaluation of P2 is v(P2) = (2, 1) (the
weights di,j are nonzero, and note that as A = 1 − 1

a , then A cannot be equal to
1). Otherwise, in the case A = 0, we find v(P2) = (0, ∞). We now compute their
orbits in these two cases.

(a) Assume that A ̸= 0, so that v(P2) = (2, 1). We check by computing the
points (σiP2)−2≤i≤2 that their bivaluations do not depend on A as long at it
is nonzero, nor the weights d1,−1, d−1,1 and d0,1, and that they are equal to

· · · →σ (−2,−3) →σ (0,−1) →σ v(P2) = (2, 1) →σ (0, 1) →σ (−2,−1) →σ . . . .
(6.4.2)

The remaining parts of the above sequence may be continued by the use of
Lemma 6.4.5. Indeed, v(σ−2P2) = (−2,−3), hence σ−2P2 satisfies condi-
tion (2) of Lemma 6.4.5, hence we know that whatever the value of A ̸= 0,
one has v(σ−k−2P2) = (−2 − 2k,−3 − 2k). Similarly, v(σ2P2) = (−2,−1)
satisfies condition (1) of Lemma 6.4.5, hence we deduce that v(σk+2P2) =
(−2 + 2k,−1 + 2k) regardless of the values of the weights di,j and A ̸= 0.
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(b) For A = 0, using the same technique, we compute the sequence of bivalua-
tions for (σiP2)−3≤i≤1 and A = 0 (with v(P2) = (0, ∞)):

· · · →σ (−2,−3) →σ (0,−1) →σ (∞, ∞) →σ v(P2) = (0, ∞) →σ (−2,−1) →σ . . . ,
(6.4.3)

Again, the remaining of the above sequence may be continued using Lemma 6.4.5.

2. We now compute δ(P2, ι1P2), for A = 0 and A ̸= 0. We first compute the coordi-
nates of ϕ(ι1P2) in P1 × P1 for generic values of the weights di,j, A and B:

ϕ(ι1P2) =

([
1 : − d0,1d1,−1t2

d1,−1d−1,1t2 + A2 − A

]
,
[

1 :
d0,1t(A − 1)

d1,−1d−1,1t2 + A2 − A

])
.

We find that

v(ι1P2) =

{
(2, 1) if A ̸= 0
(0,−1) if A = 0

.

(a) For A ̸= 0, since v(ι1P2) = (2, 1), we see by looking at (6.4.2) that if ι1P2
belongs to the orbit of P2, then ι1P2 = P2. This condition is satisfied if and
only if A = 1

2 , and then δ(P2, ι1P2) = 0. Otherwise, δ(P2, ι1P2) = ⊥.
(b) For A = 0, since v(ι1P2) = (0,−1), we see by looking at (6.4.3) that if ι1P2

belongs to the orbit of P2, then ι1P2 = σ−2P2. This is always the case for any
weighting di,j, thus δ(P2, ι1P2) = −2.

We thus compute the corresponding entry of Table 6.4.1

δ(P2, ι1P2) =


0 if A = 1

2
−2 if A = 0
⊥ otherwise.

The other entries are computed in the same way. ■

Using these results, we manage to compute M1 as defined in (6.3.2). For clarity, the
genus 0 models are subdivided according to their underlying set of steps, and there
are thus five different tables, that are 6.4.1, 6.4.2, 6.4.3, 6.4.4 and 6.4.5. For each table,
the value of every entry depends algebraically on the complex parameters A = 1 − 1

a ,
B = 1 − 1

b and di,j.
Note that from Proposition 6.3.10, the matrix M1 is symmetric so only the entries

on the upper diagonal are specified, and a simple computation allows us to deduce the
entries of M2 from those of M1. Also note that for each table, the labels P1, P2 of the
zeros of of γ̃1 are chosen arbitrarily and fixed once and for all for each model. The same
goes for the labels P3, P4 of the zeros of γ̃2,

6.5 Classification

We are now geared to prove the classification.
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ι1P1 ι1P2 σ−1P3 σ−1P4

P1 0
−1 if A = 0
⊥ otherwise

−1
−1 if B = 0
⊥ otherwise

P2

0 if A = 1
2

−2 if A = 0
⊥ otherwise

−2 if A = 0
⊥ otherwise

0 if A + B = 1
−2 if A = B = 0
⊥ otherwise

ι2P3 −2
−2 if B = 0
⊥ otherwise

ι2P4

0 if B = 1
2

−2 if B = 0
⊥ otherwise

Table 6.4.1 – Set of steps S1

ι1P1 ι1P2 σ−1P3 σ−1P4

P1 ⊥ −1 if A = 0
⊥ otherwise

−1 ⊥

P2 ⊥ ⊥
0 if A + B = 1
−2 if A = B = 0
⊥ otherwise

ι2P3 ⊥ −2 if B = 0
⊥ otherwise

ι2P4 ⊥

Table 6.4.2 – Set of steps S2

ι1P1 ι1P2 σ−1P3 σ−1P4

P1
0 if A = 1

2
⊥ otherwise

−1 if A = 0
⊥ otherwise

⊥ ⊥

P2
0 if A = 1

2
⊥ otherwise

⊥ ⊥

ι2P3
−1 if B = 1

2
⊥ otherwise

−2 if B = 0
⊥ otherwise

ι2P4
−1 if B = 1

2
⊥ otherwise

Table 6.4.3 – Set of steps S3

6.5.1 Some decouplings and homogeneous solutions

We first determine for which supports and weights the functional equation (E′
γ̃1,γ̃2

)
admits a nonzero rational solution. The two following computational lemmas will be
used to exhibit particular signed solutions to (E′

γ̃1,γ̃2
). These statements can be checked
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ι1P1 ι1P2 σ−1P3 σ−1P4

P1

0 if A = 1
2

−1 if (C4)
⊥ otherwise

−1 if A = 0
⊥ otherwise

⊥ ⊥

P2

0 if A = 1
2

−1 if (C4)
⊥ otherwise

⊥ ⊥

ι2P3 ⊥ −2 if B = 0
⊥ otherwise

ι2P4 ⊥
where (C4) ≡ (A = 0) ∧ (4d1,−1d1,1 = d0,1

2).

Table 6.4.4 – Set of steps S4

ι1P1 ι1P2 σ−1P3 σ−1P4

P1
−1 if (C5)
⊥ otherwise

−1 if A = 0
⊥ otherwise

⊥ ⊥

P2
−1 if (C5)
⊥ otherwise

⊥ ⊥

ι2P3
−2 if (C′

5)
⊥ otherwise

−2 if B = 0
⊥ otherwise

ι2P4
−2 if (C′

5)
⊥ otherwise

where (C5) ≡ (A = 0) ∧ (4d1,1d−1,1 = d0,1
2) and (C′

5) ≡ (B = 0) ∧ (4d1,1d−1,1 = d1,0
2).

Table 6.4.5 – Set of steps S5

in the joint Maple worksheet. Recall the definitions of γ̃1 and γ̃2 in (6.1.6).

Lemma 6.5.1. Assume that d1,1 = 0 (supports S1 and S2). Write x = x(s) and y = y(s), and
let λ ∈ C. Then the following identities hold:

(i) uλ
def
= (1 − λ)− td1,0x − td1,−1

x
y = −(λ − td0,1y − td−1,1

y
x ),

(ii) (λ − A + xγ̃1) uλ = λ(1 − λ)− t2d1,−1d−1,1 − (λtd1,0 + t2d1,−1d0,1)x,

(iii) − (1 − λ − B + yγ̃2) uλ = λ(1 − λ)− t2d1,−1d−1,1 − ((1 − λ)td0,1 + t2d−1,1d1,0)y.

Lemma 6.5.2. Assume that d1,0 = d0,1 = 0 (support S3). Write x = x(s) and y = y(s). Then
the following identities hold:

(i) ( 1
2 − A + xγ̃1)

2 = 1
4 − d1,−1d−1,1t2 − d1,1d1,−1t2x2,

(ii) ( 1
2 − B + yγ̃2)2 = 1

4 − d1,−1d−1,1t2 − d1,1d−1,1t2y2.

Using these computations along with Lemma 6.3.3, and the tables of Section 6.4
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along with Lemma 6.3.12, we build below Table 6.5.1 † which describes the cases where
the homogeneous equation (E′

γ̃1,γ̃2
) has solutions. Its entries are read as follows:

— Either the entry has the form (⊥, i), meaning that row i of M1 is made of ⊥’s. In
this case, the application of Lemma 6.3.12 shows that there is no nonzero solution
to (E′

γ̃1,γ̃2
).

— Either the entry has the form (ε1, ε2) ∈ (±,±), which means that there is a
nonzero pair of fractions (h′1, h′2) satisfying the relation γ̃1(s)h′1(s) + γ̃2(s)h′2(s) =
0 with (h′1)

ι1 /h′1 = ε1 and (h′2)
ι2 /h′2 = ε2 (a signed solution to (E′

γ̃1,γ̃2
)). If (ε1, ε2) ̸=

(−,−), then the application of Lemma 6.3.3 shows that there is no nonzero solu-
tion to (E′

γ̃1,γ̃2
).

Hence, Equation (E′
γ̃1,γ̃2

) has a nonzero solution if and only if the entry of Table 6.5.1
is (−,−). We thus obtain the following result:

Lemma 6.5.3. Equation (E′
γ̃1,γ̃2

) has a nonzero pair of rational solutions if and only if A =

B = 1
2 with set of steps S3. In this case, the solution is given by the pair ( 1

γ̃1
,− 1

γ̃2
).

S1 S2 S3 S4 S5

(A, B) = (0, 0) (+,+)

(A, B) = (0, 1
2 ) (−,+) (⊥, 4) (+,−) (⊥, 4)

(A, B) = ( 1
2 , 0) (−,+) (⊥, 2) (−,+) (⊥, 2)

(A, B) = ( 1
2 , 1

2 ) (+,+)
(−,−) (⊥, 4)

A + B = 1 and (A, B) ̸= ( 1
2 , 1

2 ) (⊥, 2)
A generic† (⊥, 2)
B generic† (⊥, 4)

Table 6.5.1 – The table summarizing solutions to the homogeneous equation (E′
γ̃1,γ̃2

). Note that
all cases are handled, as A and B are never equal to 1. We refer to the proof below for details on
the signed entries.

Proof of Table 6.5.1. First, the entries of type (⊥, i) can be directly checked by looking at
the tables in computed in Section 6.4. It remains to prove the “signed” entries. To do
this, we will apply Lemmas 6.5.1 and 6.5.2 for some sets of steps and various values of
A and B to exhibit the signed solutions to (E′

γ̃1,γ̃2
).

We first tell how to build the first four lines, that correspond to the cases (A, B) ∈
{0, 1

2}2. These conditions on A and B correspond to the fact that each individual func-
tion γ̃1 (depending on A) and γ̃2 (depending on B) admits a signed decoupling. More
precisely, assume that we restrict to some set of steps Si with 1 ≤ i ≤ 5, and some value
of (A, B) ∈ {0, 1

2}2. If one writes

γ̃1 = h1,1 · h1,2 with hι1
1,1 = ε1,1h1,1 and hι2

1,2 = ε1,2h1,2

†. A generic means that A ̸= {0, 1
2} and A + B ̸= 1 and B generic means that B ̸= {0, 1

2 }.
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and
γ̃2 = h2,1 · h2,2 with hι1

2,1 = ε2,1h2,1 and hι2
2,2 = ε2,2h2,2,

then one obtains the following signed solution to (E′
γ̃1,γ̃2

) for models of set of steps Si

and (A, B) having the prescribed value:

(h1, h2) =

(
h2,1

h1,1
,

h1,2

h2,2

)
with hι1

1 = ε1,1ε2,1h1 = ε1h1 and hι2
2 = ε1,2ε2,2h2 = ε2h2.

We thus only give below the signed decouplings of γ̃1 and γ̃2 relatively to the given set
of steps and weights A, B. They cover the first four lines of Table 6.5.1. We write below
x = x(s) and y = y(s).

1. Signed decouplings of γ̃1:

(a) A = 0, any set of steps: In this case, we have γ̃1 = −td−1,1
1
y ∈ C(y), hence

γ̃1 = h1,2 with hι2
1,2 = h1,2.

(b) A = 1
2 , sets of steps S1, S3 and S4 (equivalently: d1,0 = 0): In this case, it is

easy to check that

(xγ̃1)
2 = 1

4 − t2d1,−1d−1,1 − t2d1,−1d0,1x − t2d1,−1d1,1x2 ∈ C[x].

This polynomial is never a square in C[x]:

— When d1,1 = 0, it has degree 1 in the variable x because then d0,1 ̸= 0.
— Otherwise, it has degree 2 in the variable x, with discriminant ∆ equal

to

∆ = t4d2
1,−1d2

0,1 + (1 − 4t2d1,−1d−1,1)t2d1,−1d1,1

= d1,−1d1,1t2 + (d2
1,−1d2

0,1 − 4d1,−1d−1,1)t4.

The coefficient in t2 is nonzero since d1,−1 and d1,1 are nonzero. Hence,
since t is transcendental over the field Q(di,j), we deduce that ∆ ̸= 0.

Therefore, xγ̃1 does not belong to C(x(s)) while (xγ̃1)
2 does. Since C(s)/C(x)

is Galois with Galois group ι1, these conditions translate into (xγ̃1)
ι1 ̸= xγ̃1

and
(
(xγ̃1)

2
)ι1

= (xγ̃1)
2, so (xγ̃1)

ι1 = −xγ̃1, and

γ̃1 = h1,1 with hι1
1,1 = −h1,1.

2. Signed decouplings of γ̃2:

(a) B = 0, any set of steps: In this case, we have γ̃2 = −td−1,1
1
x ∈ C(x), and

thus
γ̃2 = h2,1 with hι1

2,1 = h2,1.
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(b) B = 1
2 , set of steps S1: In this case, from (iii) of Lemma 6.5.1 with λ = 1

2 we
have

µ
def
= −(yγ̃2)uλ = −( 1

2 − td−1,1
x
y )uλ = 1

4 − t2d1,−1d−1,1 − 1
2 td0,1y ∈ C[y].

Moreover, from (ii) of Lemma 6.5.1 with λ = 1
2 , then

u2
λ = 1

4 − t2d1,−1d−1,1 − t2d1,−1d0,1x ∈ C[x].

This polynomial is not a square in C(x) because it has degree 1 in x, so uι1
λ =

−uλ. Reasoning as above, we deduce

γ̃2 = h2,1 · h2,2
def
= 1

uλ
·
(
− µ

y

)
with hι1

2,1 = −h2,1 and hι2
2,2 = h2,2.

(c) B = 1
2 , set of steps S3: In this case, from (ii) of Lemma 6.5.2 we have

(yγ̃2)
2 = 1

4 − d1,−1d−1,1t2 − d1,1d−1,1t2y2 ∈ C[y].

This polynomial is not a square in C[y]. Indeed, it has degree 2, and its
discriminant ∆ is equal to

∆ = (1 − 4d1,−1d−1,1t2)d1,1d−1,1t2 = d1,1d−1,1t2 + O(t4).

As t is transcendental over the field of parameters Q(di,j), then ∆ is always
nonzero since d1,1 and d−1,1 are nonzero. Therefore, (yγ̃2)ι2 = −yγ̃2, from
which we deduce

γ̃2 = h2,2 with hι2
2,2 = −h2,2.

There now remains to fill line 5 of Table 6.5.1, which corresponds to the case of
A + B = 1 for sets of steps S1 and S2. In this case, we have from (ii) of Lemma 6.5.1
with λ = A that

(xγ̃1)uλ = λ(1 − λ)− t2d1,−1d−1,1 − (λtd1,0 + t2d1,−1d0,1)x ∈ C[x].

Moreover, from (iii) of Lemma 6.5.1 with λ = A, then

−(yγ̃2)uλ = λ(1 − λ)− t2d1,−1d−1,1 − ((1 − λ)td0,1 + t2d−1,1d1,0)y ∈ C[y].

Note that uλ ̸= 0, for (xγ̃1)uλ is a nonzero polynomial in C[x] (the constant coefficient
is a nonzero polynomial in F[t], for t is transcendental over F and d1,−1d−1,1 ̸= 0), x
transcendental over C. Therefore, the pair

(h1, h2)
def
=

(
x

xγ̃1uλ
,− y

yγ̃2uλ

)
with hι1

1 = h1 and hι2
2 = h2

is a signed solution to (E′
γ̃1,γ̃2

).
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6.5.2 One particular case: support S1, B = 1
2 and A ̸= 1

2

In the previous subsection, we were able to give a uniform proof for determining
which parameters and supports allow for nonzero solutions to (E′

γ̃1,γ̃2
). For (Eγ̃1,γ̃2,ω),

we were not able to find a uniform argument, for one edge case remains, that we thus
treat aside in this section. The remaining cases (i.e. S1 with B ̸= 1

2 or A = 1
2 or the other

set of steps) are then treated in Section 6.5.3.
This edge case concerns models with set of steps S1 (d1,1 = d1,0 = 0) and Boltzmann

weights satisfying B = 1
2 and A ̸= 1

2 . We then show that the generating function Q(x, y)
is non-D-algebraic in x or y.

Following Lemma 6.5.1, let

u def
= u1/2 = 1

2 − td1,−1
x
y = −( 1

2 − td0,1y − td−1,1
y
x ) =

1
2
− A + xγ̃1.

This function satisfies the following relations.

Lemma 6.5.4. Write x = x(s) and y = y(s). The following identities hold:

(i) u2 = 1
4 − t2d−1,1d1,−1 − t2d1,−1d0,1x ∈ C[x] and uι1 = −u,

(ii) −(yγ̃2)u = 1
4 −

1
2 td0,1y − t2d−1,1d1,−1 ∈ C[y].

Proof. The algebraic identities of (i) and (ii) are a direct consequence of Lemma 6.5.1.
Moreover, u2 ∈ C(x), while from (i) this polynomial is not a square in C(x) (indeed,

it has degree 1 in x). Since C(s)/C(x) is Galois with Galois group generated by ι1, we
have (u2)ι1 = u2 and uι1 ̸= u, hence uι1 = −u.

We investigate the solutions of (Eγ̃1,γ̃2,ω).

Lemma 6.5.5. If (h1, h2) is a solution to (Eγ̃1,γ̃2,ω), then (h2)∞ = k · (ι2P4 + P4) + p · (0+∞)
for some p ≥ 0 and k ∈ {0, 1}.

Proof. From Table 6.4.1 and Proposition 6.3.10, we observe that the only nonnegative
entry of the matrix M2 is δ(ι2P4, P4) = 1. Therefore, from Lemma 6.3.7, we see that if
(h1, h2) is a pair of solutions to (Eγ̃1,γ̃2,ω), then the poles of h2 must belong to {P4, ι2P4, 0, ∞}.

We now bound the order of the pole P4 of h2. We show that if it has order greater
than 1, then P4 is a pole of h1, and deduce a contradiction. For the first part, we use that
h2 is a solution to (Eγ̃1,γ̃2,ω):

γ̃1h1 + γ̃2h2 + ω = 0.

We first note that P4 is a zero of order 1 of γ̃2 (the zeros of γ̃1 are computed in the Maple
worksheet). Now, assume that P4 is a pole of h2 of order greater than 1. As P4 is a zero
of order 1 of γ̃2, we deduce that P4 is a pole of γ̃2h2. Then from (Eγ̃1,γ̃2,ω), we deduce
that P4 is a pole of γ̃1h1. As P4 ̸= 0, ∞, it is not a pole of γ̃1 (Proposition 6.1.3), thus P4 is
a pole of h1.
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Since P4 is a pole of h1, then by Lemma 6.3.7, there must exist Q+ ∈ L+ such that
σnP4 = Q+ for some n ≥ 0. But since B = 1

2 , Table 6.4.1 implies that δ(ι2P4, P4) =
δ(σ−1P4, P4) = 1. Therefore, we deduce that

δ(ι2P4, Q+) = δ(ι2P4, P4) + δ(P4, Q+) = 1 + n ≥ 1.

This is a contradiction, since no entry of the line corresponding to ι2P4 in Table 6.4.1 is
positive.

Therefore, the pole P4 has order 0 or 1. Since h2 satisfies hι2
2 = h2, the point ι2P4 has

the same order as P4 as a pole of h2, and Table 6.4.1 and the fact that B = 1
2 asserts that

P4 ̸= ι2P4, hence the result.

Lemma 6.5.6. The function uγ̃2 has divisor (uγ̃2) = P4 + ι2P4 − 0 − ∞.

Proof. See the dedicated section in the Maple worksheet covering the set of steps S1.

We can now state the classification for this support and parameters.

Proposition 6.5.7. For every weighted model of the set of steps S1, if B = 1
2 and A ̸= 1

2 , then
the series Q(x, y) is non-D-algebraic in x and y.

Proof. Assume that Q(x, y) is x-D-algebraic or y-D-algebraic. By Proposition 6.1.5, The-
orem 6.2.1 and Lemma 6.2.2, then F̃(s) = f̃ (s) + f̃h(s), G̃(s) = g̃(s) + g̃h(s), with ( f̃ , g̃)
solution to (Eγ̃1,γ̃2,ω) and ( f̃h, g̃h) solution to (E′

γ̃1,γ̃2
). As (E′

γ̃1,γ̃2
) has no nonzero ratio-

nal solution by Lemma 6.5.3, this implies that f̃h = g̃h = 0, thus F̃(s) = f̃ (s) and
G̃(s) = g̃(s). We now distinguish between two cases, depending on the value of k in
Lemma 6.5.5 (k = 0 or k = 1).

— If k = 0, then (g̃)∞ = p · (0 + ∞). Thus, by Lemma 6.2.4, we have that g̃(s) =
H(1/y(s)) for H(y) ∈ F[y] a polynomial. Thus, Proposition 6.1.6 implies that
yQ(0, y) = H(1/y), which is absurd since Q(0, y) = 1 + O(y).

— Otherwise, k = 1, and (g̃)∞ = P4 + ι2P4 + p · (0 + ∞). We thus have from
Lemma 6.5.6

(g̃ · (uγ̃2)) = (g̃)0 + P4 + ι2P4 − P4 − ι2P4 − (p+ 1) · (0+∞) = (g̃)0 − (p+ 1) · (0+∞).

Hence, the poles of g̃ · (uγ̃2) belong to {0, ∞}. Furthermore, we have from (ii)

of Lemma 6.5.4 that −4uγ̃2 =
1−2td0,1y(s)−4t2d−1,1d1,−1

y(s) ∈ C(y(s)), thus g̃ · (uγ̃2) is
fixed by ι2. Thus, Lemma 6.2.4 implies that g̃ · (−4uγ̃2) = H(1/y(s)) for some
polynomial H(y) ∈ F[y], and thus

g̃(s) =
y(s)

1 − 2td0,1y(s)− 4t2d−1,1d1,−1
H(1/y(s))

for some polynomial H(y) ∈ F[y]. Thus, Proposition 6.1.6 implies that

yQ(0, y) =
y

1 − 2td0,1y − 4t2d−1,1d1,−1
H(1/y).
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Since
yQ(0, y) = y + O(y2)

and

y
1 − 2td0,1y − 4t2d−1,1d1,−1

H(1/y) =
H(0)

1 − 4t2d−1,1d1,−1
+ O(1/y),

this implies that H(y) = µ a constant in F, and thus that g̃(s) = µ/u for some
µ ∈ F.
Therefore, we may rewrite (Eγ̃1,γ̃2,ω) as

γ̃1 f̃ − µ
u + ω = 0. (6.5.1)

But uι1 = −u by (i) of Lemma 6.5.4, thus (xγ̃1)
ι1 = (A − 1

2 + u)ι1 = A − 1
2 − u,

thus (γ̃1)
ι1 + (γ̃1) = (2A − 1)/x. Moreover, ω = 1 − A − B = 1

2 − A since B = 1
2 .

Thus, by taking ι1(6.5.1) + (6.5.1), one obtains the identity

(2A − 1) f̃
x − (2A − 1) = 0.

As A ̸= 1
2 , this implies that f̃ (s) = x(s). By Proposition 6.1.6, this implies that

Q(x, 0) = 1, which is absurd since a, b > 0.

6.5.3 Full classification

We now state and prove the full classification:

Theorem 6.5.8. For any weighted genus 0 model, the generating function Q(x, y) of weighted
walks in the quadrant with interacting boundaries has the following nature in the variables x
and y:

1. For all models of set of steps S1 or S2, and if a + b = ab, the generating function Q(x, y)
is rational with partial series Q(x, 0) and Q(0, y) respectively equal to

Q(x, 0) =
1

1 − x
ad1,0t + abd1,−1d0,1t2

1 − abd1,−1d−1,1t2

, Q(0, y) =
1

1 − y
bd0,1t + abd−1,1d1,0t2

1 − abd1,−1d−1,1t2

.

2. For all models of set of steps S3 where a = b = 2, the generating function Q(x, y) is
algebraic of degree 4, with partial series Q(x, 0) and Q(0, y) respectively equal to

Q(x, 0) =
1√

1 − x2 4d1,1d1,−1t2

1 − 4d1,−1d−1,1t2

, Q(0, y) =
1√

1 − y2 4d1,1d−1,1t2

1 − 4d1,−1d−1,1t2

.

3. In all other cases, the series Q(x, y) is neither x-D-algebraic nor y-D-algebraic.
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Proof. We prove all the points in order. We begin with 1. Recall that as A = 1 − 1
a

and B = 1 − 1
b , we have a + b = ab is equivalent to A + B = 1, which implies

that ω = 0. From (ii) and (iii) of Lemma 6.5.1 with λ = A, we see that the pair(
x(s)

x(s)γ̃1uA
,− y(s)

y(s)γ̃2uA

)
∈ C(x(s)) × C(y(s)) is a nonzero solution to (Eγ̃1,γ̃2,ω). There-

fore, by (1) of Lemma 6.2.7 and (i) and (ii) of Lemma 6.5.1, there exists λ ∈ C such
that

Q(x, 0) =
λ

AB − t2d1,−1d0,1x − t2d1,−1d−1,1 − Atd1,0x

and Q(0, y) =
λ

AB − t2d1,−1d1,0y − t2d1,−1d−1,1 − Btd0,1y
.

We know that Q(0, 0) = 1, hence by substituting x = 0 in Q(x, 0) (or y = 0 in Q(0, y)),
we find λ = AB − t2d1,−1d−1,1. We obtain the identities claimed in the theorem using
1
A = b and 1

B = a (this uses a + b = ab).
We now prove 2. In this case, we have from Lemma 6.5.3 that (E′

γ̃1,γ̃2
) admits a

nonzero solution
(

1
γ̃1

,− 1
γ̃2

)
. Therefore, by (2) of Lemma 6.2.7 and Lemma 6.5.2, there

exists λ ∈ C such that

Q(x, 0) =
λ√

1
4 − d1,−1d−1,1t2 − d1,1d−1,1x2t2

and Q(0, y) =
λ√

1
4 − d1,−1d−1,1t2 − d1,1d−1,1y2t2

.

We know that Q(0, 0) = 1, thus λ =
√

1
4 − d1,−1d−1,1t2, and we get the expression in

the theorem.
Now, it remains to prove (3), namely that for all other cases Q(x, y) is non-D-algebraic

in x and y. Depending on the case, we use one of the three arguments below.

(1) If we are in the situation of Section 6.5.2, then Q(x, y) is non-D-algebraic in x and
y by Proposition 6.5.7.

(2) If the entries of M1 satisfy (M1)i,j ∈ Z− ∪ {⊥}, then by Lemma 6.3.11, if (h1, h2)
is a rational solution to (Eγ̃1,γ̃2,ω), the poles of h1 must belong to {0, ∞}. Moreover,
Lemma 6.5.3 asserts that there is no nonzero rational solution to (E′

γ̃1,γ̃2
) (the only

situation where it happens corresponds to point 2 of the present theorem, and
has already been covered). Therefore, by Lemma 6.2.5, the generating function
Q(x, y) is non-D-algebraic in x and y.

(2’) Likewise, if the entries of M2 satisfy (M2)i,j ∈ Z− ∪ {⊥}, then for (h1, h2) a solu-
tion to (Eγ̃1,γ̃2,ω) the poles of h2 must belong to {0, ∞} by Lemma 6.3.11. Moreover,
Lemma 6.5.3 asserts that there is no nonzero rational solution to (E′

γ̃1,γ̃2
). There-

fore, by Lemma 6.2.5, the generating function Q(x, y) is non-D-algebraic in x and
y.

We check that for any value of the parameters, we are in one of the three above cases
(see Section 6.4).

156



6. Decoupling with an infinite group : the case of walks with interacting boundaries

Support 1 Support 2 Support 3 Support 4 Support 5
(1) Proposition 6.5.7 A + B ̸= 1 ∧ B = 1

2
(2) (M1)i,j ∈ Z− ∪ {⊥} A + B ̸= 1 A ̸= 1

2
(2’) (M2)i,j ∈ Z− ∪ {⊥} A + B ̸= 1 ∧ B ̸= 1

2 B ̸= 1
2 always

Algebraic solution A + B = 1 A = B = 1
2

The above table gives the exact argument for each value of the parameters, and one can
check that no case is missing.
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Chapitre 7

Quelques perspectives

Dans ce chapitre, on revient sur les résultats de la thèse, et réfléchit à leur éventuel
prolongement. Je tiens à préciser que cette liste est non-exhaustive.

7.1 Orbite et approche formelle

7.1.1 Rendre systématique l’élimination de pôles

Dans la classification des modèles à petits pas à poids, le critère d’algébricité est
précisément la conjonction des conditions (1) le groupe est fini et (2) la fraction xy ad-
met un découplage rationnel (résultat résumé dans [DER24]). De manière similaire,
pour un modèle à grands pas à petits pas arrière, si (1) l’orbite a été déterminée comme
étant finie et qu’une paire d’invariants rationnels non triviaux en a donc été extraite,
et (2) qu’un découplage rationnel de xy existe et a été calculé, on dispose de deux
paires d’invariants, qu’il s’agit de combiner afin d’appliquer le lemme des invariants
(Lemme 2.2.7) et conclure à l’algébricité. Dans tous les cas qui ont été traités dans
[BH24], cette procédure a pu être menée à bien. Il est alors raisonnable de penser que
ce critère s’étend aux modèles à grands pas à petits pas arrière, c’est à dire que lorsque
l’orbite de S est finie, et que la fraction xi+1yj+1 admet un découplage rationnel, alors
la série génératrice des chemins basés sur le modèle S partant du point (i, j) est algé-
brique.

La preuve du critère pour les modèles à petits pas à poids repose sur l’uniformisa-
tion de la courbe du noyau Et, de genre 0 ou 1, chose qu’il n’est pas possible de faire
dans le cas général. Une stratégie de preuve générale basée sur la stratégie [BBR21] se-
rait de prouver qu’une fois réunis les ingrédients (1) et (2), la procédure d’élimination
des pôles conduisant à une paire d’invariants satisfaisant les conditions du lemme des
invariants aboutit toujours, et dans ce cas de proposer un algorithme. On a déjà facile-
ment le lemme 2.2.10 qui rend facile la vérification du caractère trivial des invariants
dès lors que l’on parvient à éliminer les pôles en x et y des composantes des invariants.
Il faudrait alors démontrer que les pôles provenant du découplage de la fraction relative
au point de départ, et ceux provenant des invariants rationnels, permettent de produire
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une telle paire d’invariants. Enfin, il faudrait démontrer que les équations catalytiques
ainsi formées sont toujours bien fondées, de manière à pouvoir appliquer [BJ06].

7.1.2 D’autres exploitations de la structure de l’orbite

Dans la littérature des marches dans le quart de plan, on appelle sections de l’équa-
tion les fonctions inconnues, qui sont des spécialisations de la série Q(x, y, t) et de ses
dérivées, dépendant d’au plus une variable catalytique qui apparaissent dans la par-
tie droite de l’équation fonctionnelle. Par exemple, dans l’équation (1.2.3) qui apparait
dans le cas de modèles à petits pas arrière, les sections sont les séries Q(x, 0, t), Q(0, y, t)
et Q(0, 0, t). Lorsque les pas qui reculent n’ont plus cette contrainte, on peut voir ap-
paraître plus généralement les sections

(
∂n

x∂m
y Q(x, y, t)

)
(z = 0) pour tout m et n, et

z étant soit x soit y. Chaque section introduit une nouvelle fonction inconnue, ce qui
complexifie l’étude de l’équation. Aussi, on cherche à les éliminer.

Pour ce faire, les auteurs de [BBM21] évaluent l’équation sur des paires de fonctions
(u, v) de l’orbite, de sorte que le noyau de l’équation vérifie K(u, v, t) = K(x, y, t). Il faut
noter que ce travail concerne essentiellement le cas d’orbites finies. En choisissant une
certaine combinaison α(u,v) ∈ Q(u1, . . . , um, v1, . . . , vn, t) (ui et vi étant les coordonnées
qui apparaissent dans l’orbite) de ces équations (soit une somme d’orbite), les auteurs
se ramènent dans bien des cas à une équation fonctionnelle de la forme

K(x, y, t)

(
∑

(u,v)∈O
αu,vQ(u, v, t)

)
= H(u1, . . . , um, v1, . . . , vn, t) (7.1.1)

avec H une fraction rationnelle connue explicitement. Les auteurs conjecturent (Conjec-
ture 4.2 [BBM21]) qu’une telle combinaison linéaire

(
α(u,v)

)
(u,v)

existe toujours pour les

modèles bidimensionels, et d’autre part qu’elle est unique si tous les pas qui avancent
sont petits.

Les outils galoisiens développés dans [BH24] donnent de nouvelles pistes pour trai-
ter cette question, dans le sens où elle est similaire à la question du découplage, déjà
traitée dans cet article avec succès au moyen de sommes d’orbite données par la struc-
ture galoisienne de cette dernière. En outre, il existe une théorie des faisceaux sur des
graphes, qui permettrait de mieux relier les propriétés d’élimination des sections avec
les propriétés du graphe de l’orbite. On se basera notamment sur le développement
élémentaire de l’article [Fri11].

7.2 Walks with interacting boundaries

In Theorem 6.5.8, we showed how the addition of the Boltzmann weights affects
the nature of the generating function Q(x, y) of walks with interacting boundaries for
weighted models of genus 0. Namely, for the first two sets of steps, the relation a + b =
ab between the weights makes the series Q(x, y) rational ; for the third set of steps the
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relation a = b = 2 makes the series Q(x, y) algebraic ; while other Boltzmann weights
and other sets of steps keep the series non x-D-finite nor y-D-finite. We now give some
perspectives based on these results.

7.2.1 Phase transitions

Regarding the sets of steps S1 and S2, one may note that since there is an infinite
number of Boltzmann weights a, b such that Q(x, y) is explicit, the question of phase
transitions introduced in [TOR14] can be partially treated on the curve a + b = ab (a
hyperbola).

Recall that the phases are defined as follows. Let S be a weighted model. For n ≥ 0,
denote Pn the probability on the walks using n steps defined by

Pn(w) =

(
∏(i,j)∈S d

ni,j
i,j

)
anx bny

[tn]Q(1, 1)

(i.e. the probability of a walk using n steps is proportional to the numerator in the above
equation). Define

A def
= lim sup

n
Pn({w walk of n steps : w terminates on the x-axis})

and
B def

= lim sup
n

Pn({w walk of n steps : w terminates on the y-axis}).

These limits correspond respectively to A and C in [TOR14]). Four phases are then
defined as follows :

1. if A = B = 0, then the phase is free (the walk moves away from the axes),

2. if A > 0 and B = 0, then the phase is x-attracted (the walk moves away from the
y-axis, and tends to come back infinitely often on the x-axis),

3. if A = 0 and B > 0, then the phase is y-attracted (the walk moves away from the
x-axis, and tends to come back infinitely often on the y-axis),

4. if A > 0 and B > 0, then the phase is supercritical (the walk tends to come in
contact with the axes infinitely often).

The values A and B can be expressed using the generating function Q(x, y) as

A = lim sup
n

[tn]Q(1, 0)
[tn]Q(1, 1)

B = lim sup
n

[tn]Q(0, 1)
[tn]Q(1, 1)

.
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a

b

(2, 2)

x-attracted

y-attracted

free

supercritical

(a) Phase diagram on a + b = ab.
a

b

(2, 2)

(b) Conjectured phase diagram.

FIGURE 7.2.1 – Phase diagrams for model S2 with d−1,1 = d1,−1 = d1,0 = d0,1 = 1.

In the case of S1 or S2, the function Q(x, y) is rational, hence the singularity analysis
on the poles is straightforward. For instance, for the model S2 with di,j = 1, it yields the
phase diagram in Figure 7.2.1a below (see the joint Maple worksheet).

The change of nature of the generating function Q(x, y) on this curve, which contains
the critical point (a0, b0) at the junction of the four phases suggests that this curve could
be related to the phase transitions of the walk. Numerical computations allow us to
conjecture that the full phase diagram looks like Figure 7.2.1b.

It would be interesting to know whether the knowledge of the phases on the curve
a + b = ab is enough to deduce some parts of the phase diagram 7.2.1b, mainly the part
under the curve.

7.2.2 Combinatorial interpretation

For models S1, S2 and S3, we found algebraic solutions for Q(x, y) when the weights
are subject to some relations (i.e. a + b = ab for S1 and S2 ; a = b = 2 for S3). These
relations were found indirectly through the study of the q-difference equation. These
relations being simple enough , one may wonder if the expressions found in (1) and
(2) of Theorem 6.5.8 for those weights may be deduced through a more combinatorial
argument.

Regarding the weights a = b = 2 for S3, Andrew Elvey-Price pointed out in a
private communication with the author a direct proof through an adaptation of the
reflection principle. The generating function of unconstrained two dimensional walks
using the set of steps S3 that terminate on the x-axis is easily found to be

F(x, t) =
1√

1 − 4xtd1,−1
(
xtd1,1 +

1
x td−1,1

) .

The reflection principle allows us to relate walks with interacting boundaries with
Boltzmann weights a = b = 2 to these walks, through the following identity

Q(x, 0) · 1√
1 − 4t2d1,−1d−1,1

= F(x, t),
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which allows us to deduce the form of Q(x, 0).
Such a direct proof is yet to be found regarding the weights a+ b = ab, and would be

enlightening. For instance, it could give an alternative explanation as why the relation
a+ b = ab changes the nature of Q(x, y), and hopefully permit to find other sets of steps
for which this relation between the Boltzmann weights yield a D-algebraic generating
function.

7.2.3 Other q-difference equations

The general study of rational solutions to q-difference equations has already been
investigated before. Depending on different constraints on the coefficients and the rela-
tion of the complex number q with regards to these coefficients, there may or may not
be a general algorithm to decide whether such solutions exist.

In the general case where the coefficients of the equation and q may share algebraic
relations, the problem is undecidable [Abr10].

In a more specific case, when the coefficients depend on one parameter, [AR13] gives
an algorithm to determine numerical values of this parameter so that the q-difference
equation has a nontrivial rational solution. Since we work with more parameters, and
we want to find all the algebraic relations between them so that the equation has so-
lutions, none of these algorithms can be applied verbatim. This justifies the approach
taken in this chapter.

The author thinks that the approach taken in Section 6.3, specifically the structure
given by Lemma 6.3.7, might adapt quite easily to the study of other decoupling equa-
tions of mixed type (multiplicative and additive). Moreover, we note that our approach
works for a general infinite group of the walk, even if ι2ι1 is not presented as a multi-
plication by q on P1. More precisely, for a general decoupling equation of the form

uh1 + vh2 + w = 0

for functions u, v, w, hι1
1 = ±h1 and hι2

2 = ±h2 on some curve C ⊂ P1 × P1, the same
technique yields similar finite sets L−

1 , L+
1 , L−

2 and L+
2 , which may be exploited in the

same way as in Section 6.3.

7.2.4 Extension to models of genus 1

For the time being, we only performed the systematic classification for walks with
interacting boundaries of small steps of genus zero. It would seem natural to extend
the methods for the models with small steps of genus 1 of [HS08 ; DR19 ; KR12] for the
same purpose. Distinguishing between the finite group and infinite group cases, this
could be the object of two upcoming papers.
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