GALOISIAN STRUCTURE OF LARGE STEPS WALKS
IN THE QUADRANT

ABSTRACT. The enumeration of walks in the quarter plane confined in the first quadrant has
attracted a lot of attention over the past fifteenth years. The generating functions associated
to small steps models satisfy a functional equation in two catalytic variables. For such models,
Bousquet-Mélou and Mishna defined a group called the group of the walk which turned out to
be central in the classification of small steps models. In particular, its action on the catalytic
variables yields a set of change of variables compatible with the structure of the functional
equation. This particular set called the orbit has been generalized to models with arbitrary large
steps by Bostan, Bousquet-Mélou and Melczer. However, the orbit had till now no underlying
group.

In this article, we endow the orbit with the action of a Galois group, which extends the group
of the walk to models with large steps. Within this Galoisian framework, we generalized the
notions of invariants and decoupling. This enable us to develop a general strategy to prove the
algebraicity of models with small backward steps. Our constructions lead to the first proofs of
algebraicity of weighted models with large steps, proving in particular a conjecture of Bostan,
Bousquet-Mélou and Melczer, and allowing us to find new algebraic models with large steps.

1. INTRODUCTION

We consider 2-dimensional lattice weighted walks confined to the quadrant N? as illustrated
in Figure 1.1. In recent years, the enumeration of such walks has attracted a lot of attention
involving many new methods and tools. This question is ubiquitous since lattice walks encode
several classes of mathematical objects in discrete mathematics (permutations, trees, planar
maps, ..), in statistical physics (magnetism, polymers, ..), in probability theory (branching
processes, games of chance ...), in operations research (birth-death processes, queueing theory).

FIGURE 1.1. The weighted model Gy along with an example of a walk of size 8, total
weight A\? and ending at (3,0)

Given a finite set S of allowed steps in Z? and a family of W = (w;)ses of non-zero weights,
the combinatorial question consists in enumerating the weighted lattice walks in N? with steps
in S. A weighted lattice walk or path of length n consists of n + 1 points whose associated
translation vectors belong to S. Its weight is the product of the weights of all translation vectors
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2 GALOISIAN STRUCTURE OF LARGE STEPS WALKS IN THE QUADRANT

encountered walking the path. To enumerate these objects, we study the generating function

QX Y.0) = Y Xy

/L’]’n

where qﬁf’j ) is the sum of the weights of all walks in N? of n steps taken in S that start at (0,0)
and end at (7,7). One natural question for this class of walks is to decide where Q(X,Y,t) fits
in the classical hierarchy of power series:

algebraic C D-finite C D-algebraic.

Here, one says that the series Q(X,Y,t) is D-finite if it satisfies a linear differential equation
in each variable X,Y t, over Q(X,Y,t) and D-algebraic if it satisfies a polynomial differential
equation in each of the variables X, Y.t over Q(X,Y,t).

Walks with small steps. For unweighted small steps walks (that is S € {—1,0,1}? and weights
all equal to 1), the classification of the generating function is now complete. It required almost
ten years of research and the contribution of many mathematicians, combining a large variety of
tools: elementary power series algebra [BMM10], computer algebra [BK10], probability theory
[DW15], complex uniformization [KR12], Tutte invariants [BBMR21] as well as differential
Galois theory [DHRS18].

In [BMM10], Bousquet-Mélou and Mishna associated with a model W a certain group G of
birational transformations which plays a crucial role in the nature of Q(X,Y,t). Indeed, the
series Q(X,Y,t) is D-finite if and only if G, called here the classical group of the walk, is a finite
group (see [BMM10, BK10, KR12, MR09, DHRS20)).

When the group G is finite, the algebraic nature of the generating function is intrinsically
related to the existence of certain rational functions in X, Y, ¢ called in this paper Galois in-
variants and Galois decoupling pairs. These notions were introduced in [BBMR21] where the
authors proved that the finiteness of the group G is equivalent to the existence of non-trivial
Galois invariants (see [BBMR21, Theorem 4.6]) and found that the algebraicity of the model is
equivalent to the existence of Galois invariants and decoupling pairs for the fraction XY (see
[BBMR21, Section 4]).

(a) Small steps models (b) Large steps models with (¢) Large steps models with
small forward steps small backward steps

FIGURE 1.2. Models of walks

Walks with arbitrarily large steps. Compared to the case of small steps walks, the clas-
sification of walks with arbitrarily large steps is still at its infancy. In [BBMM21], Bostan,
Bousquet-Mélou and Melczer lay the foundation of the study of large steps walks. To this
purpose, they attach to any model with large steps, a graph called the orbit of the walk whose
edges are pairs of algebraic elements over Q(x,y). When all the steps of the walk are small, the
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orbit of the walk coincides with the orbit of (x,y) under the action of the group G of birational
transformations introduced in [BMM10].

Bostan, Bousquet-Mélou and Melczer started a thorough classification of the 13110 nonequiv-
alent models with steps in {1,0, —1, —2}? (which are instances of walks with small forward steps,
see Figure 1.2b). They ended up with a partial classification of the differential nature of the
associated generating functions (see [BBMM21, Figure 7]). Among the 240 models with finite
orbit, they were able to prove D-finitness for all but 9 models via orbit sums constructions
or Hadamard products. For the 12870 models with an infinite orbit, they were able to prove
non-D-finitness for all but 16 models by exhibiting some wild asymptotics for the associated
generating functions.

Content of the paper. When the steps set contains at least one large step, the authors of
[BBMM21] deplored that, within their study, the group of the walk “ is lost, but the associated
orbit survives”. In this paper, we show that one can generalize the notion of group of the
walk to models with large steps as well as many objects and results related to the small steps
framework. The novelty of our approach lies in the use of tools from graph theory, in particular
graph homology and their combination with a Galois theoretic approach. We list below our
contributions.

e We attach to any model W a group G, which we call the group of the walk. This group
generalizes the “ classic” group of the walk in many ways. First, G is the group of
automorphisms of a certain field extension. It is generated by Galois automorphisms
and extends thereby the definition of the classical group of the walk as in [FIM99, Section
2.4] (see Theorem 3.9 below). Moreover, we also prove that the orbit of the walk is the
orbit of (z,y) under the faithful action of G viewed as a group of graph automorphisms
(see Theorem 3.16). Finally, Section 6 studies the geometric interpretation of the group
G as group of birational transformations of a certain algebraic curve.

e The Galoisian structure of the group of the walk enables us to characterize algebraically
the existence of Galois invariants. To any model W, one can attach a kernel polynomial
K(X,Y) in C[X,Y,t]. A pair of Galois invariants consists in a pair of rational fractions
(F(X),G(Y)) in C(X,t) x C(Y,t) such that

K(X,Y)R(X,Y)=F(X)-G(Y),

where R is a rational fraction in C(X, Y, t) whose denominator is not divisible by K. We
prove that the existence of non-trivial Galois invariants is equivalent to the finiteness
of the group G, itself equivalent to the finiteness of the orbit (see Theorem 4.3). This
extends to any model of walk the result of [BBMR21] for small steps walks. Finally, we
give an explicit way of obtaining a non-trivial pair of Galois invariants out of the data of
a finite orbit (see Section 4.3). We give here a geometric and Galoisian interpretation of
the question of separating variables in principal bivariate polynomial ideals, as studied
in [BKP20].

e This Galoisian setting also sheds a new light on the notion of decoupling. Given a
rational fraction H(X,Y') in C(X,Y,t), a Galois decoupling for H is a pair (F'(X),G(Y))
in C(X,t) x C(Y,t) such that

K(X,Y)R(X,Y)=H(X,Y) - F(X) - G(Y),

where R is a rational fraction in C(X,Y,¢) whose denominator is not divisible by K.
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When the orbit of the model W is finite, we give a general criterion to characterize the
existence of the Galois decoupling of any rational fraction H, and an explicit expression
of such decoupling when it exists. This amounts to evaluate H on some well chosen linear
combination of pairs of the orbit (Theorem 5.10), obtained using the Galoisian structure
of the orbit and graph homology. This combination is obtained explicitely, making the
procedure constructive. Moreover, it admits an efficient implementation under a small
assumption depending only on the graph structure of the orbit (see Section 5.5). We
checked this assumption on all the finite orbits for models with steps in in {—1,0,1,2}?
classified in [BBMM21], and other known families of finite orbits. This construction
generalizes [BBMR21, Theorem 4.11] to the large steps case.

As an application, we study the existence of Galois decoupling for the function XY
for weighted models with steps in {—1,0, 1,2}2. The finite orbit-types (which correspond
to the graph structures of the orbit of the walk of these models) have been classified in
[BBMM21]. For these orbit-types, we are able to give an efficient procedure to test the
existence of the Galois decoupling of any given rational fraction, and construct it when
it exists. We applied these procedures to XY for every unweighted model with steps
in {—1,0,1,2}? and finite orbit (see Proposition 5.35). We also exhibit a new family
of models H,, with large steps for which we were able to find multiple (a,b) such that
XY admits a Galois decoupling. This corresponds to the counting problem for walks
starting at (a — 1,b — 1) (see Appendix E).

e Generating functions associated to models with small backward steps (see Figure 1.2c)
satisfy a functional equation in two catalytic variables of the form

K(X,Y)Q(X,Y,t) = XY + F(X) + G(Y),

where F(X) (resp. G(Y)) involves only the section Q(X,0,t) (resp. Q(0,Y,t)) of the
generating function. In [BBMR21] for small steps walks and [BM21] for walks confined
in the three-quadrant, the authors develop a strategy to prove (when it holds) the
algebraicity of the generating function. When XY admits a Galois decoupling pair
and when there exist nontrivial Galoisian invariants, they were able to obtain from
the functional equation above two functional equations in one catalytic variable each,
whose solutions are respectively the sections Q(X,0,¢) and Q(0,Y,t). Since solutions of
polynomial equations in one catalytic variable are known to be algebraic by [BMJ06],
one concludes to the algebraicity of the generating function Q(X,Y,t). Thanks to our
systematic approach to Galoisian invariants and decoupling, we apply their strategy to
prove the algebraicity of the generating function Q(X,Y,t) of the model G, for general
A. In particular, we prove that the excursion generating function @Q(0,0,t) of G, is
algebraic of degree 32 over Q(\)(t). By a specialization argument, we then conclude
to the algebraicity of the excursion generating functions of Gy (A = 0) and G; (A = 1).
Since these excursion generating functions coincide with those of the reversed models
of Gy and G1, we prove a conjecture on two models with small forward steps by Bostan,
Bousquet-Mélou and Melczer on [BBMM21, Page 57].

The paper is organized as follows. In Section 2, we present a strategy illustrated on the
example of G\ to prove the algebraicity of models with small backward steps based on the
Galois theoretic tools developed later on in the paper. In Section 3, we recall the construction
of the orbit of the walk and define the group of the walk as a group of field automorphisms.
Section 4 is concerned with the notion of pairs of Galois invariants and their properties. In
Section 5, we define the notion of Galois decoupling of the pair (x,y) in the orbit and prove the
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unconditional existence of such a decoupling when the orbit is finite. This yields a criterion to
test the decoupling of any rational fraction, including XY . We also study the implementation of
our decoupling test via the notion of level lines of the graph of the orbit, allowing a more effective
computation. Section 6 is for the geometry inclined reader since it presents the Riemannian
geometry behind the large steps models.

Note that, in this paper, we consider a weighted model W which is entirely determined by a set
of directions S together with a set of weights (ws)ses. The weights are always non-zero and they
belong to a certain field extension of ( which is not necessarily algebraic, allowing the choice of
indeterminate weights. Without loss of generality, one can assume that Q (ws,s € §) C C. For
ease of presentation, we consider polynomials, rational fractions with coefficients in C. However,
the reader must keep in mind that our results are valid if one replace C by the algebraic closure
of Q (ws,s € 8).

2. A STEP BY STEP PROOF OF ALGEBRAICITY

In this section, we fix a weighted model W with small backward steps. We explain how
one can combine the approach of Bousquet-Mélou and Jehanne on equations with one catalytic
variables [BMJ06] and the notion of Galois decoupling and invariants of a model to study the
algebraicity of the generating functions for models with small backwards steps. This strategy is
not yet entirely algorithmic and follows the one developed in the small steps case in [BBMR21,
Section 5| and in [BM21] for walks in the three-quadrant. We summarize its main steps in
Figure 2.1. In subsection 2.2, we apply this strategy to prove that the generating function
of the weighted model G, defined in Example 2.1 is algebraic. Therefore, the same holds for
its excursion series. Since excursion series are preserved under central symmetry, the excursion
series of the reversed model of G, is also algebraic. Thereby, we prove two of the four conjectures
of Bostan, Bousquet-Mélou and Melczer on [BBMM21, Section 8.4.2]. More precisely, we prove
that the excursion series Q(0,0,t) of two models which are obtained by reversing the step sets
of Gy and Gy are algebraic. In Appendix E, we apply this strategy to a new family of models
‘H,, and prove that the generating functions counting walks starting at (a,b) are algebraic for
various starting points (a, b).

2.1. Walks and functional equation in two catalytic variables. Recall that we do not
only study the number of walks of size n that corresponds to the series Q(1,1). We record in
the enumeration the coordinates where these walks end, encoded in the generating function as
the exponents associated with the variables X and Y. The variables X and Y in Q(X,Y,t)
are called catalytic, as they provide an easy way to write a functional equation for Q(X,Y,t)
from the recursive description of walks: either a walk is the trivial walk (with no steps), either
one adds a step to an existing walk, provided the new walk does not leave the quarter plane.
This is that boundary constraint which forces to consider the final coordinates (i, j) of the walk
to form a functional equation. This inductive description yields a functional equation for the
generating function Q(X,Y,t).

Thereby, we encode the model W in two Laurent polynomials which are the step polynomial
of the model S(X,Y) =32, s w; jX'Y7 and the kernel polynomial K(X,Y,t) = 1-tS(X,Y).
This Laurent polynomial can be normalized into a polynomial K (X,Y,t) = X" Y™ K(X,Y,t)
where —m,, —m,, are the smallest moves of the walk in the X and Y-direction. By an abuse of
terminology, we also call K the kernel polynomial. We shall sometimes write Q(X,Y), K(X,Y)
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and K(X,Y) instead of Q(X,Y,t), K(X,Y,t), K(X,Y,t) in order to lighten the notation. We
now illustrate the construction of the functional equation for the model G.

Example 2.1 (The model Gy). Consider the weighted model
g\ = {(_17 _1)7 (07 1)7 (17 _1)7 (27 1)7 ((170)7 /\)}
together with its step polynomial S(X,Y’) = ﬁ +Y + % + X2Y 4+ AX, and kernel polynomial

K(X,Y,t) = XY —t(1 + XY2 + X2 4+ X3V2 4+ AX?Y). The weight X is a nonzero complex
number.

Now, to form a functional equation, observe that the steps (1,0), (0,1) and (2,1) can be
concatenated to any existing walk, whereas the step (1, —1) can only be concatenated to a walk
that does not terminate on the X-axis, and the step (—1,—1) can only be concatenated to a
walk that does not terminate on the X-axis or the Y-axis. These conditions translate directly
into the following functional equation:

QIX,Y)=1+tYQ(X,Y) +tX*’YQ(X,Y) + MXQ(X,Y)
(2.1) +ir (Q(X,Y) — Q(X,0) — Q(0,Y) + Q(0,0)).
Note that we can express the generating function for walks ending on the X-axis, the Y-
axis or at (0,0) as specializations of the generating function Q(X,Y’). For instance, the series
Q(X,Y) — Q(X,0) counts the walks that do not end on the X-axis.

Grouping terms in Q(X,Y’) to the left-hand side and multiplying by XY to have polynomial
coefficients, we finally obtain the following equation for Q(X,Y):

K(X,Y)Q(X,Y)=XY —t(X?+1)Q(X,0) — tQ(0,Y) + tQ(0,0).

The general form of the functional equation satisfied by the generating function of a weighted
model might be quite complicated [BBMM21, Equation (11)]. For models with small backward
steps, the functional equation satisfied by Q(X,Y") simplifies as follows:

(2.2) K(X,Y)Q(X,Y) = XY + A(X) + B(Y),

where A(X) = K(X,0)Q(X,0) +teQ(0,0) and B(Y) = K(0,Y)Q(0,Y) where ¢ is 1 if (=1, —1)
belongs to S and 0 otherwise. Thus, (2.2) only involves the sections Q(X,0) and Q(0,Y") which
makes it easier to study.

Remark 2.2. One may ask whether there exists a weighting of the steps set of the model Gy
which would still yield an algebraic generating function. Consider the model

S = {((*1’ *1)7 :U’)v ((07 1)7 :u)v (27 1)’ ((17 0)7 >‘)7 (17 *1)}
which consists in adding a nonzero weight p to its two leftmost steps. Consider a lattice walk
on this model taking a times the step (—1,—1), b times the step (0, 1), ¢ times the step (2,1), d
times the step (1,0) and e times the step (1, —1). This lattice path contributes to the generating
function Q(X,Y,t) via the monomial

)\d Maer X2c+d+efa YbJrcfafe ta+b+c+d+e

One then remarks that the knowledge of the exponents of A, X, Y and ¢ completely determines
the exponent of p, for

a+b=-1d—32c+d+e—a)+i(b+c—a—e)+3(a+b+tc+d+e).
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1 103
Thus, the series Q(X, Y, t) for G\ can be expressed as Q' (Xp~ 2,Y u4,tu4), where Q' is the gen-

erating function for walks using the steps {(—1,—1),(0,1), (1,—1),(2,1), ((1,0), A\~ 4)} (that is

g/\ 1 ). Thus, the weight u is combinatorially redundant when considering the full generating
“w

series Q(X,Y) or the excursion generating series Q(0,0), and this also implies that the nature
of the model S is only determined the nature of Gy. A similar redundancy occurs when one
weights with the same nonzero weight p the two steps going upwards in Gy, or with the same
nonzero weight p the two steps going downwards in Gy. Apart from these three redundant
generalizations of Gy, we were not able to find a weighting of the steps set of Gy leading to a
finite orbit and thereby to a potential algebraic generating function.

2.2. Algebraicity strategy. In [BMJ06], Bousquet-Mélou and Jehanne proved the algebraic-
ity of power series solution of well founded polynomial equations in one catalytic variable.
Their method has been further extended recently to the case of systems of discrete differential
equations by Notarantonio and Yurkevich in [NY23]. These algebraicity results are in fact par-
ticular cases of an older result in commutative algebra of Popescu [Pop86] but the strength of
the strategy developed in [BMJ06, NY23] lies in the effectiveness of their approach.

In this subsection, we recall the algebraicity strategy developped in [BMJ06, Section 4] to de-
duce two polynomial equations in one catalytic variable from the data of a polynomial equation
in two catalytic variables a decoupling pair and a pair of invariants. We illustrate this strategy
on the model Gy. Since we alternate general discussions and their illustration on our running
example Gy, we use [J in this subsection to notify the end of the examples.

Let L be a field of characteristic zero. For an unknown bivariate function F'(u,t) denoted for
short F'(u), we consider the functional equation
(2.3) F(u) = Fo(u) +tQ (F(u), AF(w), ADF(u),..., AP F(u),t, u) ,
where Fy(u) € Lfu| is given explicitly and A is the discrete derivative: AF(u) = %F(O).
One can easily show that the equation (2.3) has a unique solution F'(u,t) in L[u][[t]], the ring of
formal power series in ¢ with coefficients in the ring L[u]. Such an equation is called well-founded.
Here is one of the main results of [BMJO06].

Theorem 2.3 (Theorem 3 in [BMJ06]). The formal power series F(u,t) defined by (2.3) is
algebraic over L(u,t).

We shall use Theorem 2.3 as a black box in order to establish the algebraicity of power series
solutions of a polynomial equation in one catalytic variable.

In order to eliminate directly trivial algebraic models, we make the following assumption
on the step sets. Write —m,, M, (resp. —m,, M,) for the smallest and largest move in the
x direction (resp. y direction) of the model W (the mg, M, m, and M, are non-negative).
Now, consider the class of models where one of these quantities is zero. All the models in this
class are algebraic. Indeed, the corresponding models are essentially one dimensional. More
precisely, if M, = 0, one shows that a walk based upon such a model is included in the half-line
x = 0. Similarly, if m, = 0, then the walks on this model have only the y constraint. Reasoning
analogously to [BMM10, Section 2.1] or [BBMM21, Section 6], one proves that the series is
algebraic. Thus, we may assume from now on that none of these parameters are zero so that
S(X,Y) is not univariate. Moreover, analogously to [BBMM21, §8.1], we exclude upper
diagonal models, that is, models for which (i, j) € S satisfy j > i as well as their symmetrical,
the lower diagonal models. Indeed, these models are automatically algebraic.
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This assumption being made, the series Q(X,Y’) satisfies naturally an equation with two
catalytic variables, and therefore does not fall directly into the conditions of Theorem 2.3.
However, the functional equation (2.2) implies that the generating function Q(X,Y") is algebraic
over C(X,Y,t) if and only if the series A(X) and B(Y') are algebraic over C(X,t¢) and C(Y,t)
respectively. Therefore, we set ourselves to find two well founded polynomial equations with
one catalytic variable: one for A(X) and the other for B(Y').

In order to produce these two equations from the functional equation (2.2), we now present a
method inspired by Tutte [Tut95] which was further adapted by Bernardi, Bousquet-Mélou and
Raschel in the context of small steps walks [BBMR21] and by Bousquet-Mélou in the context
of three quadrant walks [BM21]. We reproduce here the method of [BM21] which relies on
suitable notion of t-invariants and an Invariant Lemma for multivariate power series. The
strategy developed in [BM21] is an adaptation for formal power series of the approach already
introduced in Section 4.3 in [BBMR21].

Definition 2.4. We denote by C(X,Y)((¢)) the field of Laurent series in ¢ with coefficients in
the field C(X,Y"). The subring Cp,u(X,Y)((t)) of C(X,Y)((t)) formed by the series of the form

- 5 S

where p,(X,Y) € C[X,Y], a,(X) € C[X] and b,(Y) € C[Y].

Definition 2.5 (Definition 2.4 in [BM21]). Let H(X, Y, t) be a Laurent series in Cp,1 (X, Y)((%)).
The series H is said to have poles of bounded order at 0 if the collection of its coefficients (in
the t-expansion) have poles of bounded order at X =0 and Y = 0. In other words, this means
that, for some natural numbers m and n, the coefficients in ¢ of the series X™Y"H(X,Y’) have
no pole at X =0 nor at Y = 0.

Given a model W, one can use the notion of poles of bounded order at zero to construct an
equivalence relation in the ring Cp, (X, Y)((¢)). To this purpose, we slightly adapt Definition 2.5
in [BM21] to encompass the large step case. Moreover, in the following definition, we consider
division by K and not by K as in [BM21] but one easily checks that Definition 2.8 below and
Definition 2.3 in [BM21] coincide.

Definition 2.6 (t-equivalence). Let F'(X,Y) and G(X,Y") be two Laurent series in Cp, (X, Y)((1)).
We say that these series are t-equivalent, and we write F(X,Y) = G(X,Y) if the series
FXY)-G(X,Y)
RXY) has poles of bounded order at 0.
The t-equivalence is compatible with the ring operations on Laurent series applied pairwise
as stated below.

Proposition 2.7 (Lemma 2.5 in [BM21]). If A(X,Y) = B(X,Y) and A'(X,Y) = B'(X,Y),
then A(X,Y) + B(X,Y) = A(X,Y)+ B/(X,Y) and A(X,Y)B(X,Y) = A'(X,Y)B'(X,Y).

The notion of t-equivalence allows us to define the notion of t-invariants as follows.

Definition 2.8 (¢t-Invariants (Definition 2.3 in [BM21])). Let I(X) and J(Y) be two Laurent
series in ¢ with coefficients lying respectively in C(X) and C(Y'). If I(X) = J(Y), then the pair
(I(X),J(Y)) is said to be a pair of t-invariants (with respect to the model W).
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By Proposition 2.7, pairs of t-invariants are also preserved under sum and product applied
pairwise. We now state the main result on ¢-invariants [BM21, Lemma 2.6] whose proof origi-
nally for small steps models passes directly to the large steps context.™:

Lemma 2.9 (Invariant Lemma). Let (I(X),J(Y)) be a pair of t-invariants. If the coefficients

in the t-expansion of % have no pole at X = 0 nor'Y = 0, then there exists a Laurent

series A(t) with coefficients in C such that I(X) = J(Y') = A(t).

Note that the equations I(X) = A(t) and J(Y') = A(t) involve only one catalytic variable. In
other words, the Invariant Lemma allows us to produce nontrivial equations with one catalytic
variable from one pair of t-invariants satisfying a certain analytic regularity.

Still assuming that the negative steps are small,we can now try to combine the notion of t-
invariants and the Invariant Lemma with the functional equation satisfied by Q(X,Y’) in order
to obtain two equations in one catalytic variable for Q(X,0,t) and Q(0,Y,1).

First, we find a pair of t-invariants which involves the specializations Q(X,0) and Q(0,Y") of
Q(X,Y). One way to obtain such a pair of t-invariants is by looking at (2.2), namely:

(2.4) K(X,Y)Q(X,Y) = XY + A(X) + B(Y).

Assume that there exist some fractions F(X) in C(X,¢), G(Y) in C(Y,t), and H(X,Y) in
C(X,Y,t) having poles of bounded order at 0 such that that XY can be written as

XY = F(X)+G(Y)+ K(X,Y)H(X,Y).

We call such a relation a t-decoupling of XY. Combining the ¢-decoupling of XY with (2.4),
one obtains the following rewriting

KX, Y)(Q(X,)Y) - H(X,Y)) = (F(X) + A(X)) + (G(Y) + B(Y)).

Note now that the right-hand side has separated variables from the ¢-decoupling of XY. Since
Q(X,Y) is a generating function for walks in the quarter plane, the coefficients of its t-expansion
are polynomials in C[X,Y] (the coefficient of " is >, .~ qﬁf’y 5 'Y7), so the power series
Q(X,Y) has poles of bounded order at 0. By assumption on H(X,Y), this is also the case
for the series Q(X,Y) — H(X,Y). Therefore, (I1(X), J1(Y)) = (F(X)+A(X),-G(Y)-B(Y))
is a pair of t-invariants. It is noteworthy that this pair of ¢-invariants involves the sections
Q(X,0) and Q(0,Y).

We must note that the writing of XY as the sum of two univariate fractions modulo K was
the only condition to the existence of the pair (I1,.J1). In Section 5, we introduce the notion of
Galois decoupling of XY which is weaker though easier to test than the notion of t-decoupling.
A criterion to test the existence of a Galois decoupling for XY or, more generally, for any rational
fraction in Q(X,Y) and the computation of a Galois decoupling pair if it exists are among the
main results of this paper, and are covered in full generality in Section 5. Provided the orbit of
the walk defined in Section 3 is finite, our Galois decoupling procedure is entirely algorithmic.
Thus, one can search for a t-decoupling of XY by first looking for a Galois decoupling and then
by checking if this Galois decoupling is a t-decoupling. We now illustrate this step on the model

Gx:

I(X)=J()

RXY) vanish at X = 0 and

*In [BM21], Lemma 2.6 requires that the coefficients in the t-expansion of

Y = 0. This is equivalent to the condition stated in Lemma 2.9.
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Example 2.10 (The model G)). Recall that the functional equation (2.4) obtained for Gy is:

K(X,Y)Q(X,Y)= XY + A(X) + B(Y),
with A(X) = —t(X? + 1)Q(X,0) +tQ(0,0) and B(Y) = —tQ(0,Y). One can check that XY
admits a t-decoupling of the following form:

Xy — 3AX2t — At —4X L oAV -4 K(X,Y)
N 4t(X2 4 1) 4Y (X24+1)Yt
Combining this identity with the functional equation, one obtains the following pair of t-
invariants:

(LX), 1 (Y) = (

3N X2 -\t —4X
—4t X2 — 4¢

—t(X?+1) Q(X,0) +tQ(0,0),tQ(0,Y) +

AY +4
4Y ’

O

A priori, the pair of ¢t-invariants (I;(X), J1(Y)) that can be obtained through the combina-
tion of the functional equation and a decoupling equation does not satisfy the conditions of
Lemma 2.9, as the coefficients of the t-expansion of % might have poles at 0. In order
to remove these poles, we want to combine the pair (I;(X), J1(Y)) with a second pair of ¢-
invariants (I2(X), J2(Y')) by means of Proposition 2.7, where I5(X) and J2(Y) will be assumed
to be respectively in C(X,¢) and C(Y,¢). In order to obtain this second pair of ¢-invariants, we
rely once again on a weaker notion of invariants: the Galois invariants which are introduced
in Section 4. Theorem 4.3 below shows that the existence of a non-constant pair of Galois
invariants is equivalent to the finitness of the orbit of the walk. Currently, the pole elimination
between the two pairs of t-invariants requires a case by case treatment. We detail it for our

running example Gj.

Example 2.11 (The model Gy). The pair (I2(X), Jo(Y')) below is a pair of t-invariants for Gy:

(b 7) ((—A2X3— X4 X6 4 X2 4 1) 42— X2\ (X2 — 1) ¢+ X3 —tY4+)\tY+Y3—|—t>
2,J2) = .

£2X (X2 41)° ’ V2t

Analogously to the t-decoupling, we first search for a pair of Galois invariants, which amounts
to use the semi-algorithm presented in Section 4, and then check that this pair is a pair of
t-invariants.

As we now have two pairs of t-invariants P = (I1(X), J1(Y)) and P, = ([2(X), J2(Y)), we
perform some algebraic combinations between them in order to eliminate their poles. To lighten
notation, we write the component-wise operations on the pairs P; of t-invariants. Computations
can be checked in the joint Maple worksheet.

Consider the Taylor expansions of the first coordinates:

LX) =3 +0(X),
L(X)=X"1+0(X).

Out of these two pairs of t-invariants, we first produce a third pair of ¢-invariants without a
pole at X = 0 as follows:

A
P3 = (13, J3) = P2 <P1 - 4> .
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The first coordinate of the pairs P; and P3 do not have a pole at X = 0. The Taylor expansion
of their second coordinates J1(Y) and J3(Y') at Y = 0 is as follows:
82
nyyzy—3+@men+Aﬂﬁa+t<Q@JUA+852®AD>Y—W+OQNy

JL(Y)=Y""+0(Y?).
In order to produce a pair of ¢-invariants satisfying the assumption of the Invariant Lemma,
we need to combine P, and Ps in order to eliminate the pole at Y = 0. Note that, since the
first coordinate of P; and P3; have no pole at zero, the first coordinate of any sum or product

between these two pairs have no pole at X = 0. Using the simple pole at Y = 0 of J3, we
produce a new pair P, whose coordinates have no pole at X and Y equal zero by setting

? 52
T}g (0,0) — t2Q(0,0)* + 16) Pr.

It remains to check that % has no poles at X = 0 and Y = 0. This is done in the
joint Maple worksheet. Therefore, the Invariant Lemma yields the existence of a series C(¢) in
C((t)) such that I,(X) = C(t) and J4(Y') = C(¢). O

Once we have found a pair of t-invariants satisfying the conditions of Lemma 2.9, we end up
with two nontrivial polynomial equations in one catalytic variable involving the sections Q(X, 0)
and Q(0,Y). If these equations are well-founded, then Theorem 2.3 allows us to conclude that
the series Q(X,0) and Q(0,Y") are algebraic over C(X,t) and C(Y,t) respectively, and therefore
that Q(X,Y) is algebraic over C(X,Y,1).

Example 2.12 (The model G). The value of C(t) can be deduced from the values of Q(0,Y)
and its derivatives at 0 by looking at the Taylor expansion of J4(Y') at Y = 0. The verification
that the polynomial equations I4(X) = C(t) and J4(Y) = C(t) are well-founded is done in the
Maple worksheet. We only give here the form of the well-founded equation for F(Y) := Q(0,Y):

A
Py = (I4,Js) := Py — P} + <275Q(0>0)—4> P{+ <2t

(2.5) F(Y)=1+1 (t?YF(Y) <A<1>F(Y))2 FMF(Y)AVEY) +t (A<1>F(Y))2

FUF(YV)ADFY) + YF(Y) + MA@ F(Y) + 2A<3>F(Y)) .

Theorem 2.3 with . = Q()\) implies that the generating function of the weighted model Gy
is algebraic over Q(\)(X,Y,t). Moreover, one can show that, at any step of our reasoning, one
may have taken the weight A to be zero. In particular, the generating function of the model
Go is algebraic. Thus, the excursion generating functions @Q(0,0) of the reverse models of Gy
and G; are algebraic over Q(¢). In Appendix A, we apply the method of Bousquet-Mélou and
Jehanne to the polynomial equation (2.5) to find an explicit minimal polynomial of degree 32
over Q(\, t) for Q(0,0) of the model Gy. O

For unweighted small steps models, the results of [BMM10, BK10, KR12, DHRS20, MM14]
show that the generating function is algebraic in the variables X and Y if and only if the
model admits some non-trivial Galois invariants and XY has a Galois decoupling. For weighted
models with small steps, [DR19, Corollary 4.2] and [BBMR21, Theorem 4.6 and Theorem 4.11]
imply that the existence of non-trivial Galois invariants and of a Galois decoupling pair for XY
yield the algebraicity of the generating functions. We conjecture that the reverse implication is
also true yielding an equivalence which should also be valid in the large steps case. The general
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strategy we used in this section is summarized in Figure 2.1 and motivates the above conjecture.
It is the first attempt at finding uniform proofs for the algebraicity of generating functions of
large steps models.

The strategy detailed above is entirely algorithmic, except for the fact that Galois invariants
and decoupling are t-invariants and t-decoupling and that they yield polynomial equations in
one catalytic variable satisfying the conditions of Theorem 2.3. Nonetheless, we think that
this last step could be made constructive via for instance the generalization of the notion of
weak invariants [BBMR21, Section 5.2] to the large steps framework. The rest of the paper is
devoted to the systematic and algorithmic study of the notions of pairs of Galois invariants and
decoupling.

Pair of ¢-invariants without poles

!

‘Algebraic equations for Q(X,0) and Q(0,Y) ‘

{

‘ Algebraic equation for Q(X,Y) ‘

Functional equation for Q(X,Y) Pair of ¢-invariants involving the functions Q(X,0) and Q(0,Y)

Galois decoupling of XY Pair of Galois invariants

FIGURE 2.1. Summary of the strategy for proving algebraicity

3. THE ORBIT OF THE WALK AND ITS (GALOISIAN STRUCTURE

In the context of small steps models, the group of the walk (which we qualify classic in this
paper for disambiguation) has been initially introduced in [BMM10, Section 3]. It is the group
generated by two birational involutions ® and ¥ of C x C defined as follows. Assuming that
the model has at least a negative and a positive X and Y-steps, one writes its step polynomial
S(X,Y) = Z(i,j)eS w(;, )XY as

S(X,Y) = A—1(X)% + Ap(X) + A1 (X)Y = B—1(Y)% + Bo(X) + B1(Y) X,

where the A; and B;’s are Laurent polynomials. The birational transformations ® and ¥ are

then defined as
(g B_1(y) and T - (2 L A()
2 ’y)H<$Bl(y)’y> 4¥:( ’y)H( ’yAl(fL‘)>'

When the classic group of the walk is infinite, its action on the variables X and Y produces
an infinite amount of singularities for the generating function Q(X,Y") proving that the series
is not D-finite (see [MM14] or [KR12] for instance). When the group of the walk is finite, one
can describe in certain cases the generating function as a diagonal of a rational function, called
the (alternating) orbit sum. To such a group, one can attach a graph, called the orbit, whose
vertices are the orbit in C(z,y)? of the pair (z,y) under the action of ® and ¥ and whose edges
correspond to the action of ® and ¥ (see [BMM10, Section 3]).

In [BBMM21], the authors generalized the notion of the orbit of the walk to arbitrary large
steps models but did not attempt to find a group of transformations which generates this orbit.
In this section, we show how one can associate to a weighted model W a group, called in
this paper the group of the walk, which is generated by Galois automorphisms of two field
extensions. In this section, we prove that the group of the walk acts faithfully and transitively
on the orbit analogously to the classic group. When the orbit is finite, this group is itself
presented as a Galois group. We interpret in the next two sections the notions of invariants
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and decoupling in this Galoisian framework. Moreover, for finite orbits, one can interpret the
group of the walk as a group of automorphisms of an algebraic curve (see Appendix 6). This
point of view generalizes the notion of the classic group of the walk in the small step case used
in [KR12, DHRS18, DHRS20].

From now on, we fix W a weighted model, and we assume that the step polynomial S(X,Y) is
not univariate, which is the case when considering models with both positive and negative steps
in each direction as in Section 2.1. In order to distinguish the coordinates of the orbit from the
coordinates of X, Yt of the functional equation in Section 2.1, we introduce two new variables x
and y that are taken algebraically independent over C. We also denote by k the field C(S(x,y)).
As z, y and S(z,y) satisfy by definition the polynomial relation K (z,y,1/S(z,y)) = 0, the
condition that S is not univariate implies the following lemma.

Lemma 3.1. The variables x, y and the polynomial S(x,y) satisfy the following relations:

(1) = and S(z,y) are algebraically independent over C, and so are y and S(z,y),
(2) x is algebraic over k(y) and y is algebraic over k(z).

The orbit as well as the associated group, Galois invariants and Galois decoupling pairs are
constructed for S(X,Y") arising from a model of walk. These constructions should pass directly
to the case where S(X,Y) is an arbitrary non-univariate rational fraction in C(X,Y)
by letting K(X,Y,t) be (1 — tS(X,Y))Q(X,Y) with § = g for P,@Q two relatively prime
polynomial in C[X,Y].

In Section 3.1, we recall the definition of the orbit of a model W with large steps. We give it
a Galois structure in Section 3.2. In Section 3.3, we define the group of the walk and prove that
it acts faithfully and transitively by graph automorphisms on the orbit. Finally, we investigate
the evaluation of fractions in C(X,Y,¢) on the orbit.

3.1. The orbit. We recall below the definition of the orbit introduced in [BBMM21, Section
3], and we also fix once and for all an algebraic closure K of C(z,y).

Definition 3.2 (Definition 3.1 in [BBMM21]). Let (u,v) and (u/,v) be in K x K.

If w =" and S(u,v) = S(v,v"), then the pairs (u,v) and (u’,v") are called z-adjacent, and
we write (u,v) ~® (v/,v"). Similarly, if v = ¢v' and S(u,v) = S(u/,v’), then the pairs (u,v)
and (u/,v") are called y-adjacent, and we write (u,v) ~¥ (u/,v"). Both relations are equivalence
relations on K x K.

If the pairs (u,v) and (u/,v’) are either z-adjacent or y-adjacent, they are called adjacent,
and we write (u,v) ~ (u/,v’). Finally, denoting by ~* the reflexive transitive closure of ~, the
orbit of the walk, denoted by O, is the equivalence class of the pair (x,y) under the relation ~*.

The orbit O has a graph structure: the vertices are the elements of the orbit and the edges
are adjacencies, colored here by their adjacency type. The x-adjacencies are represented in red
and the y-adjacencies in blue. As the x and y adjacencies come from equivalence relations, the
monochromatic connected components of O are cliques (any two vertices of such a component
are connected by an edge). Moreover, by definition of the transitive closure, the graph O is
connected, that is, every two vertices of the graph are connected by a path. In the sequel, we
denote by O either the set of pairs in the orbit or the induced graph. The structure considered
should be clear from the context. For a model W, its orbit type corresponds to the class of its
orbit modulo graph isomorphisms.
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FIGURE 3.1. A sample of finite orbits

Example 3.3. For small steps models, the orbit when finite is always isomorphic to a cycle
whose vertices all belong to C(x,%)?. Example Cg in Figure 3.1 is for instance the unlabelled
orbit of the unweighted small steps model S = {(-1,0), (0,1), (1,—1)} [BMM10, Example 2].

The orbit type being preserved when one reverses the model, Section 10 in [BBMM21] lists
the distinct orbit types for models with steps in {—1,0, 1,2}? with at least one large step. For

these models, the finite orbit types are exactly O12, 012 and O1g in Figure 3.1 and the cartesian
product orbit-types of the Hadamard models that correspond to a step polynomial of the form
R(X)+ P(X)Q(Y) (see BBMM21, Section 6] or Section 5.6.3).

Example 3.4 (The model Gy). For Gy, the polynomial K(Z,y,1/S(z,y)) is reducible over

k(xz,y)[Z] and factors as x3y2+((Z/\;i)1y)1;2(iL%+l

P(Z)=xy?Z + (2% + \ay +2)Z — 1.

Thus, an element (z,y) € K2 distinct from (z,y) is y-adjacent to (x,y) if and only if z is a root
of P(Z). Its roots are of the form z, ﬁgz by the relation between the roots and the coefficients

where

of a degree two polynomial. One can then show that the orbit Q19 in Figure 3.1 is the orbit of
the model G). Since none of the vertices depend on A, the graph 5 is also the orbit of the
model Gy.

Finally, we would like to discuss the finiteness of the orbit. For small steps walks, the finiteness
of the orbit depends only on the order of ® o ¥. Some number theoretic considerations on the
torsion subgroup of the Mordell-Weil group of a rational elliptic surface prove that this order,
when finite, is bounded by 6, which provides a very easy algorithm to test the finiteness of the
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group of the walk. This bound is valid for any choice of weights contained in an algebraically
closed field of characteristic zero (see [HS08, Remark 5.1] and [SS19, Corollary 8.21]). For
models with arbitrarily large steps, there is currently no general criterion to determine whether
the orbit is finite or not, but only a semi-algorithm [BBMM21, Section 3.2]. We hope that
analogously to the small steps case a geometric interpretation of the notion of orbit will provide
some bounds on the potential diameter of the orbit.

3.2. The Galois extension of the orbit. In the remaining of the article, we denote by k(QO)
the subfield of K generated over k = C(S(z,y)) by all coordinates of the orbit O. Note that
k(O) coincides with C(Q) since x,y belong to the orbit.

We start this subsection with some terminology on field extensions. Our main reference is
[Sza09] which is a concise exposition of the Galois theory of field extensions of finite and infinite
degree. A field extension M C L is denoted by L|M. The degree of the field extension L|M
is the dimension of L as M-vector space. When this degree is finite, we denote it [L : M].
For L|M and L'|M two field extensions, an M -algebra homomorphism of L into L’ is a ring
homomorphism from L to L’ that is the identity on M. An algebraic closure of a field M is
an algebraic extension of M that is algebraically closed. Let us recall some of its properties.

Proposition 3.5 (Proposition 1.1.3 in [Sza09]). Let M be a field.

(1) There exists an algebraic closure M of M. It is unique up to isomorphism.

(2) For an algebraic estension L of M, there exists an embedding from L to M leaving
M elementwise fized. Moreover, any M -algebra homomorphism from L into M can be
extended to an M -algebra isomorphism of L to M.

The field K introduced in Section 3.1 is an algebraic closure of C(z,y). By definition of the
orbit, k£(O) = C(O) is an algebraic field extension of C(z,y). Moreover, since y is algebraic over
k(x) and x is algebraic over k(y) by Lemma 3.1, then C(z,y) is an algebraic field extension of
k(x) and k(y). Therefore, k(O) is algebraic over k(z) and k(y). Proposition 3.5 implies that K
is an algebraic closure of k(x), k(y) and k(O).

Let L|M be a field extension. Any M-algebra endomorphism of L is an automorphism and
we denote by Aut(L|M) the set of M-algebra endomorphisms of L. An algebraic field extension
L|M is said to be Galois if the set LA™EIM) of elements of L that remain fixed under the
action of Aut(L|M) coincides with M (see [Sza09, Definition 1.2.1]). In this case, Aut(L|M)
is denoted by Gal(L|M) and called the Galois group of L|M. By [Sza09, Proposition 1.2.4],
an algebraic field extension L|M is Galois if and only if, fixing an algebraic closure M of M,
we have o(L) C L for any automorphism o in Aut(M|M) T. The Galois group Gal(L|M) of
a finite Galois extension L|M has order [L : M| [Sza09, Corollary 1.2.7]. It is clear that any
sub-extension L| M’ ¥ of a Galois extension L|M is Galois. Finally, we recall the following result.

Lemma 3.6 (Lemma 1.22 in [Sza09]). Let L|M be a Galois extension and p € M[X] an
irreducible polynomial with some root o in L. Then p splits in L, and the group Gal(L|M) acts
transitively on its roots.

We let any C-algebra endomorphism ¢ of K act on K x K coordinate-wise by
o (u,0) € (o(u),0(v)).

fSince we are in characteristic zero, the separable closure of M coincides with the algebraic closure of M (see
[Sza09, page 12]).
iBy subextension, we mean that M C M’ C L.
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The following lemma establishes the compatibility of the equivalence relation ~* with the action
of C-algebra endomorphisms of K.

Lemma 3.7. Let (u,v) and (u',v") be two pairs in K x K and 0: K — K be a C-algebra
endomorphism. Then (u,v) ~* (u',v") (resp. (u,v) ~Y (u',v")) implies that o+ (u,v) ~* o-(u',v’)
(resp. o - (u,v) ~¥Y o - (u',v")). The same holds therefore for ~*.

Proof. Since o is a C-algebra endomorphism, we have oS(u,v) = S(ou,ov) for any u,v in K.
Therefore, if (u,v) ~* (u,0) then S(o(u),0(v)) = o(S(u,v) = o(S(u,v') = S(o(w), o)),
so o - (u, v) ~* g - (u,v"). The same argument applies if (u v) ~Y (u’,v) The general case of
(u,v) ~* (u',v") follows by induction. O

As a direct corollary, we find the following lemma which ensures the setwise stability of the
orbit under certain endomorphisms of K.

Lemma 3.8. Let 0,: K — K be a k(x)-algebra endomorphism. Then, for all (u,v) in the orbit,
oz - (u,v) is in the orbit. Similarly, the orbit is also stable under k(y)-algebra endomorphisms
of K.

Proof. Let (u,v) be in the orbit, i.e. (u,v) ~* (z,y). By Lemma 3.7, we find that

Ox * (u,v) ~ oy (az,y) = (xvo-:(:(y))
By transitivity, we only need to prove that (z,0.(y)) is in the orbit. This is true because
S(x,04(y)) = 028(z,y) = S(z,y) since oy, fixes C(z, S(z,y)) so (z,04(y)) ~* (2,y). O

The above two lemmas imply that any k(z) or k(y)-algebra automorphism of K induces a
permutation of the vertices of O which preserves the colored adjacencies, and is therefore a
graph automorphism of O. The stability result of Lemma 3.8 translates as a field theoretic
statement.

Theorem 3.9. The extensions k(O)|k(z), k(O)|k(y) and k(O)|k(x,y) are Galois.

Proof. We first prove that k(O)|k(x) is a Galois extension. Recall that the field extension
E(O)|k(x) is algebraic and K is an algebraic closure of k£(O) and k(x). Thus, we only need to
prove that o(k(O)) C k(O) for every automorphism ¢ in Aut(K|k(z)). This follows directly from
Lemma 3.8. The proof for k(O)|k(y) is entirely symmetric and the field extension k(O)|k(x,y)
is Galois as subextension of k(O)|k(x). O

Theorem 3.9 gives a Galoisian framework to the orbit, which will be central in our study
of Galois invariants and decoupling. Remark that the algebraic extension k(O)|k(x,y) may
be of infinite degree. In Figure 3.2, we represent the different Galois extensions involved in
Theorem 3.9 and we denote their Galois groups G, = Gal(k(O)|k(x)), G, = Gal(k(O)|k(y))
and Gy = Gal(k(O)|k(z,y)). Note that Gy = Gy N Gy

Example 3.10. For small steps models, we have k(O) = k(x,y) = C(z,y). Moreover, the field
extensions k(O)|k(z) and k(O)|k(y) are both of degree 2 so that G, and G, are groups of order
2 and thereby isomorphic to Z/27Z. In the notation of the beginning of Section 3, consider the
endomorphisms ¢, 9 of C(x,y) defined as follows: for f(z,y) € C(z,y), we set ¢(f) = f(P(z,y))
and ¥(f) = f(V(x,y)). It is easily seen that ¢ € G, and that ¢ € G, and that they both are
non-trivial involutions. Thus, we have Gy = 1, G = (V) ~ Z/2Z and G, = (¢) ~ Z/2Z.

Example 3.11 below shows that, unlike the small steps case, one has to go to a finite non-
trivial field extension of C(z,y) in order to build the orbit of a large steps model.
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FIGURE 3.2. The field extensions attached to the orbit

Example 3.11 (The model G)). In the case of Gy, we have k(O) = C(z,y, z) where z is a root
of the polynomial P(Z) = zy?Z% + (2%y* + Avy +x)Z — 1 (see Example 3.4). Its discriminant is

T (:n3y4 + 2>\:E2y3 + Nz y2 + 23323/2 + 2 xy + 4y2 + :L')

which cannot be a square in k(x,y) = C(z,y) because of the irreducible factor x. Thus,
the polynomial P(Z) is irreducible in C(x,y)[Z]. Therefore, z ¢ k(z,y) and the extension
E(O)|k(z,y) is of degree 2. As above, we find that G, ~ Z/2Z.

The field extension k(O)|k(y) is of degree 6 so that its Galois group is either S35 or Z/6Z. In
this last case, the group G, would be a normal subgroup of G,. As k(z,y) = k(O)%v, the
extension k(z,y)|k(y) would be Galois by [Sza09, Theorem 1.2.5]. This is impossible since the
root z of K(Z,y,1/S(z,y)) is not in k(z,y). Hence, we find that Gy~ Ss.

The extension k(O)|k(x) is of degree 4. Its Galois group is of order four and therefore either
isomorphic to Z/27 x Z/27Z or to Z/AZ. If G, were Z/AZ then there would exist a k(x)-algebra
endomorphism o of k(O) of order 4. Since G, is of order 2, the automorphism o can not fix y
and we must have o(y) = w—ly, which is the other root of K (x,Y,1/5(z,y)) € k(z)[Y]. Since the

orbit is setwise invariant by o and (z,y) is in the orbit, the same holds for o(z,y) = (o(2), i)
From the description of the orbit of Gy in Figure 3.1, we find that o(z) € {1,zy?2}. In both
cases, we find that 0%(z) = z which implies that ¢ is the identity on k(Q). A contradiction.

Hence, we conclude that the group G, is isomorphic to Z/27 x Z/27.

3.3. The group of the walk. In this section, we prove that the orbit O is the orbit of the
pair (x,y) under the action of a certain group which generalizes the one introduced in the small
steps case by Bousquet-Mélou and Mishna [BMM10, Section 3].

Definition 3.12. For a model W with non-univariate step polynomial, we denote by G the
subgroup of Aut(k(O)|k) generated by G, and Gy, and we call it the group of the walk.

Recall the discussion on small steps models. Example 3.10 shows that the group G is gener-
ated by the automorphisms 1, ¢, as they generate G, and G,. Thereby, G is isomorphic to the
classic group of the walk (®, ).

As explained in Section 3.2, every element of G induces a graph automorphism of O, that
is, a permutation of the vertices of O which preserves the colored adjacencies on the orbit O.
In Theorem 3.16 below, we prove that there exists a finitely generated subgroup of G whose
action on O is faithful and transitive, which is a notable property of the classic group of the
walk. It is clear that the group G acts faithfully on the orbit O. Indeed, if an element o of G
is the identity on any element of the orbit then o is the identity on k(Q). Therefore, o is the
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identity. The construction of a finitely generated subgroup of G with a transitive action on the
orbit requires a bit more work. We first prove two lemmas on the polynomial K(X,Y,t).

Lemma 3.13. The kernel polynomial I?(X, Y,t) is irreducible in C[X,Y,t]. Therefore, it is
irreducible as a polynomial in C(X,t)[Y],C(Y,t)[X] and C(t)[X,Y].

Proof. The kernel polynomial is a degree 1 polynomial in ¢, therefore it is irreducible in C(X, Y')[¢].
Moreover, its content is one by construction. Therefore, by Gauss Lemma [Lan02, chap. V par.
6 Theorem 10], the kernel polynomial is irreducible in C[X,Y][t] = C[X,Y,t]. Since S(X,Y)
is not univariate, the polynomial K does not belong to C[X,t], Gauss Lemma asserts that K
being irreducible in C[X,¢][Y] is also irreducible in C(X,¢)[Y]. The same reasoning holds for
the irreducibility of K in C(Y,)[X]. It is clear that since K is irreducible in C[X,Y,#] and not
in C(t), it is irreducible in C(¢)[X,Y]. O

Lemma 3.14. The specializations of the kernel polynomial K (z,Y,1/S(x,y)) and K (X,y,1/S(x,y))
are respectively irreducible as polynomials in k(x)[Y] and in k(y)[X].

Proof. We only prove the first assertion by symmetry of the roles of x and y. Consider the
C-algebra homomorphism ¢ : C[X,t] — k(z) defined by ¢(X) = x and ¢(¢) = 1/S(z,y). Since
S(X,Y) is not univariate, the fractions x and 1/5(z,y) are algebraically independent over C.
Therefore the morphism ¢ is one-to-one, so it extends to a field isomorphism ¢ : C(X,t) — k(x)
(onto by definition of k(z)), which extends to a C-algebra isomorphism ¢ from C(X,¢)[Y] to
k(z)[Y]. Moreover, by Lemma 3.13, K(X,Y,t) is irreducible as a polynomial in C(X,#)[Y].
Therefore, since I?(:J:,Y, 1/8(x,y)) = qﬁ(I?(X,Y,t)) and ¢(C(X,t)) = k(x), we conclude that
the polynomial K (z,Y,1/8(z,y)) is irreducible over k(z). O

For large steps models, the extensions k(O)|k(z) and k(O)|k(y) might be of infinite degree,
hence the groups G, and G, might not be finite, not even finitely generated (unlike the small
steps case where they are always cyclic of order 2). However, note that G, is the stabilizer of
the pair (z,y) in the orbit. Therefore, the action of G on (z,y) factors through the left quotients
G4 /Gyy and Gy /G4y which are proved to be finite in the following lemma.

Lemma 3.15. The group Gy is of finite index in Gy and in G, with |G, : Ggy| = my + M,
and [Gy : Ggy] = my + M.

Proof. The orbit Q of y under the action of G, is a subset of the roots of the polynomial
K(x,2,1/5(z,y)) € k(x)[Z]. This polynomial is irreducible by Lemma 3.13, so G, acts transi-
tively on its roots by Lemma 3.6, hence Q coincides with the set of roots of K (z, Z,1/5(z,y))
which is a finite set of cardinal degy K = M, +m,. Moreover, the stabilizer of y for this action
is precisely the group Gg,. Therefore, the quotient G,/G4, can be identified with €2, wich

proves that Gy, is of finite index in G, with [G, : G4y] = My +m,. The proof for the subgroup

G, is analogous. O
Therefore, we fix, once and for all, a set I, = {id,.{,... ,Lfny " My} of representatives of the
left cosets of Gy /Gqy, and a set I, = {id, «{, ... ,Lz% L+, + of representatives of the left cosets of

Gy/Gay. By construction,
Go = (1o, Gey) ,Gy = (Iy,Guy) , and G = (I, I, Goy) -
We now have all the ingredients to prove the transitivity of the action of a finitely generated

subgroup of G on O. We only recall that the distance between two vertices of a graph is the
number of edges in a shortest path connecting them.
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Theorem 3.16 (Transitivity of the action). The subgroup of G generated by I, and I, acts
transitively on the orbit O.

Proof. We show that for all pairs (u,v) of O there exists an element o in (I, I,) such that
o-(z,y) = (u,v). As the graph of the orbit is connected, the proof is done by induction on the
distance between (z,y) and (u,v). If (u,v) is at distance zero to (z,y) then (u,v) = (z,y) and
we set o = id.

Let (u,v) be in O of positive distance d to (z,y). Then there exists a pair (u/,v") at distance
d — 1 to (x,y) that is adjacent to (u,v). Without loss of generality, one can assume that
(u',v") is z-adjacent to (u,v), that is, v = u/. By induction hypothesis, there exists o in
(I, I) such that o - (z,y) = (u,v). Therefore, since (u,v’) ~* (u,v), the application of ¢~
implies by Lemma 3.7 that (x,y) ~* (2,07 (v)). Thus, y and o~!(v) satisfy the equation
S(z,y) — S(z,Y), so they are roots of the polynomial K (x,Y,1/S(x,y)) which is an irreducible
polynomial over k(z) by Lemma 3.14. Therefore, by Lemma 3.6, there is an element o, in G,
such that o,(y) = o7 1(v). Let ¥ in I, be the representative of the left coset 0,Gyy. Then,
(0%) - (2,y) =0 (0z - (2,y)) =0 (x,071(v)) = (u,v). This concludes the proof. O

This result shows that the orbit O is actually the orbit of the pair (z,y) under the action of
a finitely generated subgroup of G. As a direct corollary, one finds that the extensions k(z,y)|k
and k(u,v)|k are isomorphic for any pair (u,v) in the orbit. Indeed, let ¢ in G such that
o (z,y) = (u,v) then o induces a k-algebra isomorphism between k(z,y) and k(u,v).

For large steps models with an infinite orbit, it might be quite difficult to give a precise
description of the automorphisms in I, and I,. Indeed, they act as a permutation on the
infinite orbit O and their action on x or y is not in general given by a rational fraction in z and
y as in the small steps case. When the steps are small or when the orbit is finite, one is able to
give a more precise description of these generators.

Example 3.17. In the small steps case and in the notation of Example 3.10, one can choose
I, = {id, ¢} and I, = {id, ¢}.

Example 3.18 (The model Gy). For G, the group G is isomorphic to S3, Gy to Z/27Z and
G, to Z/27. We give below the expression of automorphisms ¢*, (Y and 7 such that

I, = {id,*}, I, = {id, Y}, Gy = (7).
They satisfy the relations (:%)? = (:¥)® = 72 = id. We represent below their action on the orbit.

Example 3.19. In [BKP20, Notation 3.6], the authors attach to a “separated polynomial ”
P(X) 4+ Q(Y) where P(X) € C[X] of degree m and Q(Y) € C[Y] of degree n a Galois group
which can be seen as a subgroup of S, X S,,. This Galois group coincides with the group of the
walk of the Hadamard model with step polynomial P(X) + Q(Y) (see Appendix D).

Note that an z-adjacency in the orbit corresponds to the action of an element of G that
is conjugate to an element of G,. Indeed, for (u,v) in the orbit, Theorem 3.16 yields the
existence of ¢ € G such that o(u,v) = (z,y). Then, if (u,v) ~* (u,v’), Lemma 3.7 proves
that o(u,v’) ~* (z,y). As explained above, any z-adjacency to (z,y) corresponds to the action
of an automorphism in G, so that there exists o, in G, such that o(u,v’) = o.(z,y). We
conclude that (u,v') = 0~ to,0(u,v). In the above example for the model Gy, one sees that
(z,y) ~* (2, ) and that .*(:¥)~! - (2,y) = (2, ). The automorphism :* belong to G, but it
is not the case of %1% (¢¥)~! since V1= (Y) 1 (2) = zy2.

Moreover, the transitivity of the action of G on the orbit also implies the following minimality
result for the extension k(O).
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FIGURE 3.3. The elements of I, and I, for the model Gy

Proposition 3.20. The field k(O) is the smallest field in K that is a Galois extension of k(x)
and a Galois extension of k(y).

Proof. Let M C K be a Galois extension of k(z) and a Galois extension of k(y). Proposition 3.5
shows that K is an algebraic closure for M. Let (u,v) be an element of O. To prove that
k(O) C M, we only need to show that v and v belong to M. By Theorem 3.16, there exists o in
G such that o (z,y) = (u,v). Let us first assume that o belongs to G. Since K is an algebraic
closure for k(z), Proposition 3.5 shows that o extends as a k(z)-algebra endomorphism of K
still denoted o. The field extension M |k(x) is Galois and K is an algebraic closure of M so that
o(M) C M. Since x and y belong to M, the same holds for (u,v). The proof is analogous if o
belong to G,. Since G is generated by G, and G, an easy induction concludes that u = o(x)
and v = o(y) both belong to M for any ¢ in G. O

3.4. Orbit sums. One of the purposes of the orbit is to provide a nice family of changes of
variables, in the sense that the kernel polynomial K (X, Y, ) is constant on the orbit: for all pairs
(u,v) of the orbit, K(u,v,t) = K(x,y,t) (because S(x,y) = S(u,v)) This polynomial being a
factor of the left-hand side of the functional equation satisfied by the generating function, one
can evaluate the variables (X,Y) at any pair (u,v) of the orbit and obtain what is called an
orbit equation. Indeed, the generating function Q(X,Y’) and its sections Q(X,0) and Q(0,Y)
belong to the ring of formal power series in ¢ with coefficients in C[X, Y] so that their evaluation
at (u,v) belong to the ring C[O][[t]]. Note that such an evaluation leaves the variable t fixed.
The strategy developed in [BBMM21, Section 4] for models with small forward steps consists
in forming linear combinations of these orbit equations so that the resulting equation is free
from sections. From the section-free equation, Bostan, Bousquet-Mélou and Melczer sometimes
succeed in isolating the generating function Q(X,Y’) and expressing it as a diagonal of algebraic
fractions which leads to its D-finitness by [Lip88]. For models with small backward steps, it
is quite easy to produce a section-free equation from (2.2) when the orbit contains a cycle.
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However, it is very unlikely that, for models with small backward steps and at least one large
step, such a section free equation suffices to characterize the generating function.

In this paper, we want to evaluate the variables X, Y, ¢ at (u,v,1/S(z,y)) for (u,v) an element
of the orbit. Since K (u,v,1/S(z,y)) = 0 for any element (u,v) of the orbit O, such an evaluation
is similar to the kernel method used in [KR12] for models with small steps. More precisely, let us
define a 0-chain as a formal C-linear combination of elements of the orbit O with finite support.
This terminology is borrowed from graph homology (see Section 5 for some basic introduction).
Let vy = Z(u,v)e(’) C(uw) (1, ) be a zero chain. Since the coefficients c(, ., are complex and almost
all zero, the evaluation P, of a polynomial P(X,Y,t) € C[X,Y,t] at ~y is defined as

P, = Z C(u,v)P(u7v)a

(u,w)eO

and belongs to C[O]. The evaluation of K (X,Y,) at any O-chain vanishes so that one can not
evaluate a rational fraction in C(X,Y,t) whose denominator is divisible by K. This motivate
the following definition.

Definition 3.21. Let H(X,Y,t) = 28?1;2 be a rational fraction in C(X,Y,t) where A(X,Y,t)
and B(X,Y,t) are relatively prime polyﬁdmials in C[X,Y,t]. Wesay that H(X,Y,t) is a regular
fraction if B(X,Y,t) is not divisible by the kernel polynomial K(X,Y, t) in C[X,Y,t].

Remark 3.22. Since S(X,Y) is not univariate, the kernel polynomial involves all three vari-

ables X.,Y and t, so does a multiple of K (X,Y,t) (by a simple degree argument). Therefore,
any fraction in C(X,t) or C(Y,¢) is regular.

We endow the set of regular fractions in C(X,Y,t) with the following equivalence relation:
two regular fractions H, G are equivalent if there exists a regular fraction R such that H — G =
K(X,Y,t)R. We denote by C the set of equivalence classes. Since the equivalence relation is
compatible with the addition and multiplication of fractions, one easily notes that C can be
endowed with a ring structure. Moreover, since K (X, Y, 1) is irreducible in C[X,Y, ], any non-
zero class is invertible proving that C is a field. Indeed, if H is a regular fraction that is not

equivalent to zero, then one can write H = g with P,@ € C[X,Y,t] relatively prime and K
does not divide P nor (). Thus, the fraction % is regular and its class in C is an inverse of the
class of g. Moreover, since K is not univariate, any non-zero element in C(X,t) or C(Y,t) is a

regular fraction which is not equivalent to zero. Therefore, the fields C(X,t) and C(Y,t) embed
into C. By an abuse of notation, we denote by C(X,t) and C(Y,¢) their image in C.

Proposition 3.23. Fora fraction H in C(X,Y,t) and (u,v) in O, the evaluation H(u,v,1/S(x,y))
of H at (u,v) is a well defined element of K if and only if H is a regular fraction.

The C-algebra homomorphism ¢ : C — k(z,y), P(X,Y,t) — P(z,y,1/S(x,y)) is well defined
and is a field isomorphism which maps isomorphically C(t) onto k = C(S(z,y)), C(X,t) onto
k(z) and C(Y,t) onto k(y).

Proof. Recall that by Theorem 3.16, given a pair (u,v) € O, there exists o € G such that
o (z,y) = (u,v). The automorphism o induces a k-algebra isomorphism between k(z,y)
and k(u,v) so that the evaluation at (x,y,1/S(z,y)) composed by o is the evaluation at
(u,v,1/S(x,y)). Thereby, we only need to prove the first part of the proposition for the evalu-
ation at (x,y,1/S(x,y)).
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Since I?(x, y,1/S(x,y)) = 0, it is clear that one can not evaluate a fraction that is not regular.
Thus, we only need to show that the evaluation of a regular fraction at (z,y,1/S(z,y)) is well

defined. Let us write H(X,Y,t) = % where A(X,Y,t) and B(X,Y,t) are relatively prime

in C[X,Y,t], and the kernel polynomial K (X,Y,t) does not divide B(X,Y,t). There exist two
polynomials U,V € C[X,Y,t] such that

B(X,Y,HU(X,Y,t) + K(X,Y,t)V(X,Y,t) = R(X,Y)

with R(X,Y) € C[X,Y] the resultant of I?(X,Y,t) and B(X,Y,t) for the variable ¢. Since
K(X,Y,t) is an irreducible polynomial that does not divide B(X,Y, ), the resultant R(X,Y) is
a nonzero polynomial. Since x,y are algebraically independent over C, one finds that R(x,y) # 0
and K(z,y,1/S(x,y)) = 0 which implies that B (z,y,1/S(x,y)) # 0, so H (z,y,1/S(x,y)) is
well defined. B

By Lemma 3.13, the kernel polynomial K (X,Y,t) is irreducible as a polynomial in C(¢)[X, Y].
The ring R = C(t)[X, Y]/(K(X,Y,t)) is therefore an integral domain. By [Mat80, page 9, (1K)],
its fraction field is precisely C. Now, the evaluation map from C(t)[X,Y]/(K(X,Y,t)) to k[z,y]
is a ring isomorphism which maps isomorphically C(t) onto k. The latter ring isomorphism

extends to an isomorphism between the fraction fields C of C(¢)[X,Y]/(K(X,Y,t)) and the
fraction field k(z,y) of k[z,y] which concludes the proof. O

If H is a regular fraction, we denote Hy,,) its evaluation at an element (u,v) of the orbit
and we can extend this evaluation by C-linearity to any O-chain y. We denote by H, the
corresponding element in k(O). Such an evaluation is called an orbit sum. We let the group G
act on 0-chains by C-linearity, that is, o (Z(W})Eo Clu,) (u,v)) = Z(W})Eo Clu)0 * (u,v). The

following lemma shows that the evaluation morphism is compatible with the action of G on
k(O) and on 0-chains.

Lemma 3.24. Let o be an element of G, v be a 0-chain, and H(X,Y,t) be a regular fraction
in C(X,Y,t). Then o(Hy) = Hy..

Proof. Let (u,v) be an element in the orbit. Since o fixes k = C(S(x,y)), we have

J(H(u,v)) =0 (H(uv v, 1/S($7 y)) =H (J(U)7 O-(U)v 1/S(ZL‘, y)) = Ha~(u,v)'
The general case follows by C-linearity. U

Two equivalent regular fractions have the same evaluation in k(). Thereby, certain class of
regular fractions can be characterized by the Galoisian properties of their evaluation in k(O).
This idea underlies the Galoisian study of invariants and decoupling in Sections 4 and 5. To
conclude, we want to compare the equivalence relation among regular fractions that are elements
of Coui(X,Y)((t)) and the t-equivalence (see Section 2.2 for notation).

Proposition 3.25. Let F' € C,,y(X,Y)((t)) that is also a regular fraction in C(X,Y,t). If F
is t-equivalent to 0, that is, the t-expansion of F/K has poles of bounded order at 0, then the
fraction F/K is reqular so that the reqular fraction F is equivalent to zero by definition.

Proof. Our proof starts by following the lines of the proof of Lemma 2.6 in [BM21]. Assume that
F' is t-equivalent to 0, so that there exists H(X,Y,t) € Cpu(X,Y)((¢)) with poles of bounded
order at 0 such that

(3.1) F(X,Y)=K(X,Y,H)H(X,Y,1).
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Analogous arguments to Lemma 2.6 in [BM21] show that there exists a root X of K(.,Y,t) =0
that is a formal power series in ¢ with coefficients in an algebraic closure of C(Y') and with
constant term 0. Since H and F have poles of bounded order at 0, one can specialize (3.1)

at X = X and find F(X,Y,t) = 0. Writing F' = g where P,Q € C[X,Y,t] are relatively

prime, one finds that P(X,Y,t) = 0. Since K(.,Y,t) is an irreducible polynomial over C(Y,)
by Lemma 3.13, we conclude that K divides P. Because P and Q are relatively prime, we find
that K doesn’t divide () which concludes the proof. O

K(X,Yt)

Clearly, the regular fraction =5~ is equivalent to zero but not {-equivalent to zero, so
the converse of Proposition 3.25 is false. With the strategy presented in Section 2 in mind, we
will use in the next sections the notion of equivalence on regular fractions and its Galoisian
interpretation to produce pairs of Galois invariants and Galois decoupling pairs. For each
pair of Galois invariants and decoupling functions constructed for the models presented in
Section 5.6, it happens that any equivalence relation among these regular fractions is actually
a t-equivalence. Unfortunately, we do not have any theoretical arguments yet to explain this
phenomenon.

The rest of the paper is devoted to the Galoisian interpretation of the notions of invariants
and decoupling. Their construction relies on the evaluation of regular fractions on suitable
0-chains.

4. GALOIS INVARIANTS

In this section, we prove that the finiteness of the orbit is equivalent to the existence of a non-
constant pair of Galois invariants (see Theorem 4.3 below). This result generalizes  BBMR21,
Theorem 7] in the small steps case and was proved in the more general context of finite alge-
braic correspondences in [Fri78, Theorem 1]. Fried’s framework is geometric, but his proof is
essentially Galois theoretic. We give here an alternative presentation which does not require
any algebraic geometrical background. Moreover, we show in this section that if the orbit is
finite, the field of Galois invariants is of the form k(c) for some element ¢ transcendental over
k. In addition, we give an algorithmic procedure to effectively construct c.

4.1. Galois formulation of invariants. In Section 2, we aimed at constructing t-invariants
that were rational fractions, that is, pairs (I(X,t), J(Y,t)) satisfying an equation of the form
I(X,t)— J(Y,t) = K(X,Y,t)R(X,Y,t) with R having poles of bounded order at zero (I and .J
are t-equivalent). With the philosophy of Section 3.4 in mind, we introduce the weaker notion
of pair of Galois invariants based on rational equivalence. Our definition extends Definition 4.3

in [BBMR21] to the large steps context.

Definition 4.1. Let (I(X,t), J(Y,t)) be a pair of rational fractions in C(X,¢) x C(Y,t) (hence
regular, as they are univariate). We say that this pair is a pair of Galois invariants if there

exists a regular fraction R(X,Y,t) such that I(X,t) — J(Y,t) = K(X,Y,t)R(X,Y,t), that is,
the regular fractions I(X,t) and J(Y,t) are equivalent.

From Proposition 3.25, a pair of rational ¢-invariants is a pair of Galois invariants. Therefore,
it is justified to look for a pair of Galois invariants first, and then to check by hand if their
difference is t-equivalent to 0. Moreover, the notion of pairs of Galois invariants is purely
algebraic while the notion of pairs of ¢-invariants involves some analytic considerations which
might be difficult to handle. Using Lemma 3.23, the set of pairs of Galois invariants corresponds
to a subfield of k£(O) which can be easily described.
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Proposition 4.2. Let P = (I(X,t),J(Y,t)) be a pair of fractions in C(X,t) x C(Y,t). Then P
is a pair of Galois invariants if and only if the evaluations I,y and Ji, ) are equal, and thus
belongs to k(z) Nk(y) C k(O). Moreover, the pair P is a constant pair of Galois invariants if
and only if Iy ) = Jzy) is in k.

Therefore we denote the field k(z) N k(y) as kiny and, by an abuse of terminology, call its
elements Galois invariants. The definition of the group G and the Galois correspondence applied
to k(O)|k(z) and k(O)|k(y) show that f in k(O) is a Galois invariant if and only if f is fixed
by G. Moreover, Proposition 4.2 reduces the question of the existence of a nonconstant pair of
Galois invariants to the question of deciding whether ki,, = k or not.

4.2. Existence of nontrivial Galois invariants and finiteness of the orbit. The existence
of a non-constant pair of Galois invariants is equivalent to the finiteness of the orbit as proved
in Theorem 1 and Lemma p 470 in [Fri78] which holds also in positive characteristic and in
a higher dimensional context. Theorem 4.3 below is a rephrasing of Fried’s Theorem in pure
Galois theoretic arguments.

Theorem 4.3. The following are equivalent:

(1) The orbit O is finite.

(2) There exists a finite Galois extension M of k(x) and k(y) such that Gal(M|k(z))
and Gal(M|k(y)) generate a finite group (Gal(M |k(x)), Gal(M |k(y))) of automorphisms
of M.

(3) There exists a nontrivial Galois invariant, that is, k C kiny.

Proof. (1) = (2): Set M = k(O). The group G = (G,,Gy) acts faithfully on the orbit, so it
embeds as a subgroup of S(O), the group of permutations of the pairs of the orbit O. The orbit
is finite, therefore G is finite.

(2) = (3): Write H = (Gal(M|k(z)), Gal(M|k(y))). By the same argument as in the begin-
ning of Section 3.3, the field M* is the field ki,y of Galois invariants. Since H is finite, the
extension M |kiny is finite of degree |H|, hence the subextension k(z)|kiny is also finite. Since the
extension k(x)|k is transcendental by hypothesis on W, we conclude that k& C kin,. Proposition
4.2 yields the existence of a pair of nontrivial Galois invariants.

(3) = (1): Let (I(X,t),J(Y,t)) be a pair of nontrivial Galois invariants. By the assump-
tion on the model, S(x,y) and x are algebraically independent over C. Since I(z,1/S(z,y))
is not in C(1/S(x,y)) by Lemma 3.23, this implies that the extension k(I(x,1/S(x,y)))|k is
transcendental. As the transcendence degree of k(z) over k is 1, this implies that the extension
k(x)|k(I(z,1/S(z,y))) is algebraic, hence z is algebraic over kiny, with minimal polynomial
P(X).

The group G leaves kiny fixed. Thus the orbit of z in K under the action of G is a subset
of the roots of P(X). By Theorem 3.16, the action of G is transitive on the orbit, hence the
set G-z ={ueK|3o e Gu=oz}={uecK|Iek, (u,v) € O} is finite. As there are
degy K (X,Y,t) pairs of the orbit with first coordinate u for each u in G - x, we conclude that
O is finite. O

In the rest of the paper, we assume that the orbit is finite. Theorem 4.3 implies that the
extension k(O)|kiny is finite and Galoisian with Galois group G = (G, Gy).

4.3. Effective construction. In order to apply the algebraic strategy presented in Section 2,
we want to find explicit nonconstant rational t-invariants. As already mentioned, we shall first
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construct explicitly the field of Galois invariants and then search among these Galois invariants
the potential rational ¢-invariants.

In the small steps case, an orbit sum argument was used to construct a pair of Galois invariants
[BBMR21, Theorem 4.6]. This construction generalizes mutatis mutandis to the large steps case,
and is reproduced here to show one way to exploit the group of the walk.

Lemma 4.4. Let w be the 0-chain ﬁ Y aco @ Then, for any regular fraction H € Q(X,Y,t)
the element H,, is a Galois invariant.

Proof. Let H(X,Y,t) be a regular fraction. Since, by Theorem 3.16, the group G acts faithfully
on O, the 0-chain w is invariant by the action of G. Thus, by Lemma 3.24, for all ¢ in G,
o(Hy) = Hy., = H,,. Therefore, by the Galois correspondence, H,, is a Galois invariant. O

Unfortunately, a non-constant regular fraction H might have a constant evaluation, that is,
H,, might belong to k. Thus, one has to choose carefully H in order to avoid this situation which
is precisely the strategy used in [BBMR21, Theorem 4.6]. Below, we describe an alternative
construction which is easier to compute effectively and yields a complete description of the field
kinv-

Consider first this simple observation. Since x is algebraic over ki, we can consider its
minimal polynomial pi;(Z) in kiny[Z]. One of its coefficients must be in kiny \ k& because x is
transcendental over k. Thus, such a coefficient is a non-trivial Galois invariant.

A more sophisticated argument using a constructive version of Liiroth’s Theorem says actually
much more about such a coefficient.

Theorem 4.5 (Liiroth’s Theorem [Rot15], Th. 6.66). Let k(z) be a field with x transcendental
over k and k C K C k(x) a subfield. If x is algebraic over K, then any coefficient ¢ of its
minimal polynomial p,(Z) over K that is not in k is such that K = k(c).

Applying this result to the tower k C kiny C k(z), not only can we find nontrivial Galois
invariants among the coefficients of u,, but any one of them generates the field of Galois
invariants. In one sense, these coefficients contain all the information on the Galois invariants
attached to the model. Therefore, all that remains is to compute effectively the polynomial
tia(Z).

By irreducibility of the polynomial p,(Z) in kiny[Z], the Galois group G = Gal(k(O)|kiny)
acts transitively on its roots. By Theorem 3.16, the orbit of x under the action of G is the
set of left coordinates of the orbit. Therefore, u,(Z) is precisely the vanishing polynomial of
the left coordinates of the orbit, which is exactly computed in the construction of the orbit in
[BBMM21, Section 3.2]. We detail this construction in Appendix B.

In order to find an explicit pair of non-constant Galois invariants (I(X,t), J(Y,t)), we only
need to apply Proposition 3.23 to lift to C(X,t) and to C(Y,t) any non-constant coefficient
of the polynomial p;(Z) € kiny[Z]. The lifts of the polynomial u.[Z] to C(X,t)[Z] and to
C(Y,t)[Z] can be computed directly when constructing the orbit, see B.1.
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Example 4.6 (The model G,). Consider the model Gy. Its orbit type is O12. We compute the
lift of pu,(Z) in C(X,t)[Z] as

g WX XOHIXT - X2 -2 XA (X 1) ¢ - X0 75+t
£2X (X2 +1)° t

2,2
X0 4 (=252 4 D) X010+ 0) XA (12— ap) x2 - BEEDX

£2X (X2 +1)°
t+N22 (PXP+ X0+ X1 - X2 1) 2+ X°X\ (X2 — 1)t—X3)Z .
t 12X (X24)?

and in C(Y,t)[Z] as

t2

) z3

764 —tY4+AtY+Y3+tZ5+t+AZ4_2(Y4—%YQAQ—YA—1)t2—tY3+Y;Z3
ty? t 12Y2

(t+2) o (—tY*+ XY + Y3+ ¢t)

ot * tY?

Z —1.

The coefficient of Z® is nonconstant, hence we have the following pair of non-trivial Galois
invariants (1(X,t), J(Y,t))

(X34 XO+1X— X2 1) 2+ XN (X?—)t — X? ¢V 4 Y + V3 +¢
£2X (X2 +1)° ’ tY? ‘

We check that % has poles of bounded order at 0, hence (I(X,t), J(Y,t)) is a pair of

t-invariants. Moreover, Theorem 4.5 says that ki,, = k (I(x,1/S(x,y))), so any pair of Galois
invariants for Gy is a fraction in the pair (I(X,t), J(Y,t)).

Example 4.7. The orbit type of the model with step polynomial S(X,Y) = X + % + % +
is 013 (see Figure 3.1). With our method, we find the following pair of Galois invariants

1
X2

(X% -3X%+1) 2 + (X + X° —2X2) t + Xt (VP +3Y +1) (Y +1)°#3 + Y*
X0 ’ Y23 (Y +1)° ‘

One can also check by looking at the t-expansions that it is a pair of t-invariants.

5. DECOUPLING

In this section, we study the Galoisian formulation of the notion of decoupling introduced
in Section 2.2. In particular, assuming the finiteness of the orbit, we show how the Galois
decoupling of a rational fraction H(X,Y,t) can be, analogously to the small steps case, tested
and constructed if it exists via the evaluation on certain 0-chains on the orbit.

5.1. Galois formulation of decoupling. As in the previous section, we adapt the notion of
decoupling introduced in Section 2.2 to our Galoisian framework. The definition below is the
straightforward analogue of Definition 4.7 in [BBMR21] for large steps models.
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Definition 5.1 (Galois decoupling of a fraction). Let H(X,Y,t) be a regular fraction in
C(X,Y,t). A pair of fractions (F(X,t),G(Y,t)) in C(X,t) x C(Y,t) is called a Galois decoupling
pair for the fraction H if there exists a regular fraction R(X,Y,t) satisfying

H(X,Y,t)= F(X,t)+ G(Y,t) + K(X,Y,t)R(X,Y,1).
We call such an identity a Galois decoupling of the fraction H.

Thanks to Proposition 3.25, if a regular fraction admits a decoupling with respect to the
t-equivalence then it admits a Galois decoupling. Analogously to the notion of Galois invariants
and as a corollary of Proposition 3.23, one can interpret the Galois decoupling as an identity in
the extension k(O).

Proposition 5.2. Let H be a reqular fraction in C(X,Y,t). Then H admits a Galois decoupling
if and only if H(,,) can be written as f + g with f in k(x) and g in k(y).

By an abuse of terminology, we call any identity H(,,) = f + g with f in k(z) and g in
k(y) a Galois decoupling of H. Furthermore, these last two conditions can be reformulated
algebraically via the Galois correspondence applied to the extensions k(O)|k(z) and k(O)|k(y):
Hy) = f +g with f fixed by G, and g fixed by G.

Given a regular fraction H, one could try to use the normal basis theorem (see [Lan02, chapter
6, § 13]) to test the existence of a Galois decoupling for H. The normal basis theorem states
that there exists a kiny-basis of k(O) of the form (o(a))seq for some a € k(O). The action
of G, and Gy on this basis is given by permutation matrices, and thus the linear constraints
for the Galois decoupling of H(, ) is equivalent to a system of linear equations. Unfortunately
the computation of a normal basis requires a priori a complete knowledge of the Galois group
G, whose computation is a difficult problem. Therefore, we present in the rest of the section
a construction of a Galois decoupling test which relies entirely on the orbit and its Galoisian
structure.

5.2. The decoupling of (z,y) in the orbit.

Definition 5.3. Let a be a 0-chain of the orbit. We say that a cancels decoupled fractions if
H, = 0 for any regular fraction H(X,Y,t) of C(X,t) + C(Y,1).

(u1,v2)
A
(u1,v1) (u2,v2) = (u1,v2) — (ur,v1) + (u2,v3) — (u2,v2) + (u3,v1) — (us, v3)
o l F(X)a:F(UI)—F(U1)+F(u2)—F(U/2)+F(U3>—F(U3):O
(us, vlz\ (U2,93)  G(Y)o = G(va) — G(v1) + G(v3) — G(v) + G(v1) — G(vg) =0
(u3,v3)

Fi1GURE 5.1. The 0-chain induced by a bicolored loop cancels decoupled fractions

We recall that a path in the graph of the orbit is a sequence of vertices (ai,asg, ..., an+1) such
that a; ~ a;+1 for all 0 < ¢ < n. The length of (aj,as,...,a,+1) is the number of adjacencies
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(that is n). A path is called a loop 3 if a,11 = a;. A loop is called simple if only its first and
last vertices are equal.

Example 5.4. A bicolored loop is a loop (a1, as, ..., as,+1) of even length such that for all i,
ag; ~* agi—1 and ag;i+1 ~Y ag;. One associates to (a1, as,...,as,+1) the O-chain
2n n n
o= Z(_l)iai = Z(a% - a2i—1) = Z(QQZ' - a2i+1).
i=1 i=1 i1

Taking F'(X,t) a regular fraction in C(X,t), one observes that for all i, F,,, — Fg,, , = 0,
as vertices ag; and ag;—1 share their first coordinate. Symmetrically, taking G(Y,t) a regular
fraction in C(Y,t), Gay,, — Gay, = 0. Therefore, F, = G, = 0. Hence, the 0-chains induced by
bicolored loops cancel decoupled fractions. Figure 5.1 illustrates this observation.

Example 5.4 is fundamental for picturing the O-chains that cancel decoupled fractions because
of the following stronger result:

Proposition 5.5. A 0-chain cancels decoupled fractions if and only if it can be decomposed as
a C-linearY combination of 0-chains induced by bicolored loops.

There exists an elementary graph theoretic proof of this fact. However, we choose to postpone
the proof of Proposition 5.5 after the proof of Theorem 5.24, which is an algebraic reformulation
of the condition for a 0-chain to cancel decoupled fractions.

Example 5.6. A straightforward application of this observation, is the following obstruction
for the existence of a Galois decoupling of XY. Consider an orbit whose graph contains a
bicolored square (bicolored loop of length 4), with associated 0-chain « = (uq,v1) — (u1,v2) +
(ug,v2) — (u2,v1) (thus with u; # ug and v; # v2). The evaluation of XY on this 0-chain
factors as (XY), = (u1 — ug)(v1 — v2), which is always nonzero. Therefore, if the orbit of a
model W contains a bicolored square, then XY never admits a Galois decoupling and thereby a
decoupling in the sense of the ¢-equivalence. Thus, we can conclude that for models with orbit
O12 (see Figure 3.1) or Hadamard (see Section 5.6.3), or the “Fan model” (see Appendix C.3),
the fraction XY never admits a decoupling.

For now, we only saw that the canceling of a regular fraction on 0-chains that cancel decoupled
fraction gives a necessary condition for the Galois decoupling of this fraction. We prove in this
section that this condition is in fact sufficient and that one only needs to consider the evaluation
on a single 0-chain.

For small steps walks with finite orbit, there is only one bicolored loop and thereby only
one O-chain « induced by the bicolored loop. Theorem 4.11 in [BBMR21] shows that a regular
fraction admits a Galois decoupling if and only its evaluation on « is zero. More precisely,
Bernardi, Bousquet-Mélou and Raschel proved an explicit identity in the algebra of the group
of the walk. Rephrasing their equality in terms of O-chains in the orbit, we introduce the notion
of decoupling of the pair (x,y) in the orbit as follows:

Definition 5.7 (Decoupling of (z,y)). We say that (z,y) admits a decoupling in the orbit if
there exist O-chains vz, 7y, « such that
e (zy)=rnthyta

SWe know that the terminology loop is unorthodox, however we follow [Gib81, Definition 1.8].

TNote that if the O-chain is with integer coefficients, one can choose the combination with integer coefficients
as well.
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® 0, Yy =y forall o, € Gy
® 0y =1, forall oy € G,
e the O-chain « cancels decoupled fractions

In that case, we call the identity (x,y) =7z + 7y + a a decoupling of (x,y).

Note that if (7, ¥y, ) is a decoupling of (x,y) then the 0-chain « is equal to (z,y) — 7z — 7.
Hence, when giving such a decoupling, we will often state explicitly only v, and -,.

Example 5.8. For the orbit of the model Gy, a decoupling equation is as follows: (z,y) =
Yz + Yy + a with

%= (5 )+ @am) = § (o) + (o) + (@s,am) + (=am)
5 (007259 + (72) 4 (-5, ~a92) + (7,02 )

ond 5, = (5 (@) + o) + Catzn) = § (@0 + (7 + (e —an) ).

This decoupling is constructed in Subsection 5.6.2 and the 0-chain « is represented in Figure 5.2.
It is the sum of the two 0-chains a; and a9 induced by the two bicolored loops where the weights
of the 0-chains a; and ao are written in grey next to their corresponding vertex.

(z3,51) — (24,91)

(wﬂyl)

(zlvy) (‘T?vy)

(z1,92) (z2,93)

(r3,92) (24,y3)

(w5,92) (z5,93)
v

FIGURE 5.2. A 0-chain of Oy, characterizing decoupled fractions for the model Gy where
the weights are written in grey next to their corresponding vertex.

The relation between the notion of decoupling of (x,y) in the orbit and the notion of Galois
decoupling is detailed in the following proposition.

Proposition 5.9. Assume that (z,y) = vz + 7y + o is a decoupling of (z,y), and let H(X,Y,t)
be a regqular fraction. Then the following assertions are equivalent:

(1) H admits a Galois decoupling
(2) Hy=0
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(3) H(sy) = Hy; + Hy, is a Galois decoupling of H.

Proof. (3) = (1) is obvious.

(1) = (2): By definition of a Galois decoupling of (z,y), a cancels decoupled fractions.

(2) = (3): Evaluating H on the decoupling of (z,y) yields the identity H(, ) = Hy; + H5..
Moreover, since 7, (resp. 7,) is fixed by G, (resp. G,), then Lemma 3.24 and the Galois
correspondence in the extensions k(O)|k(x) and k(O)|k(y) ensure that Hy. and H, belong
respectively to k(x) and k(y), hence Hy, + Hy; is a Galois decoupling of H.

O

Therefore, if we solve the decoupling problem of (z,y) in the orbit, we also solve the Galois
decoupling problem for rational fractions: an explicit decoupling of (z,y) will grant us with
a simple test to check whether a regular fraction admits a Galois decoupling (some orbit sum
is zero), and an effective way to construct the associated Galois decoupling based on orbit
sum computations. We now state the main result of this section, whose proof will follow from
Theorem 5.25.

Theorem 5.10 (Decoupling). If the orbit O is finite, then (z,y) always admits a decoupling
in the orbit with rational coefficients.

The rest of this section is dedicated to the proof of Theorem 5.10 and to the effective con-
struction of the decoupling of (z,y) in the orbit.

5.3. Pseudo-decoupling. We define here a more flexible notion of decoupling in the orbit
called pseudo-decoupling, mainly used in the proof of the Theorem 5.10.

Definition 5.11 (Pseudo-decoupling). Let 7, and 7, be two 0-chains. We call the pair (v, vy)
a pseudo-decoupling of (x,y) if for every regular fraction H(X,Y,t) that admits a Galois decou-
pling, the equation H(,,) = H,, + H,, is a Galois decoupling of H, that is, H,, € k(x) and
H,, € k(y).

For instance, if (z,y) = 72z + 7y + a is a decoupling of (z,y), then the pair (7;,7y) is a
pseudo-decoupling of (z,y) by Proposition 5.9.

Theorem 5.12 below shows how a pseudo-decoupling yields a decoupling. First let us give
some notation. Let G’ be a subgroup of G. We denote by [G’] the formal sum ﬁ Y ovec O

From a Galois theoretic point of view, if G’ is the Galois group of some subextension k(O)|M,
then [G'] is the trace of the field extension k(O)|M.

Theorem 5.12. If a pair (s, vy) is a pseudo-decoupling of (x,y), then (x,y) admits a decoupling
of the form

(@,9) =72+ + o
where vy = [Gz] - Y2 and v, = [Gy] - vy.

Proof. By construction, the 0-chains 7, and 7, are fixed under the respective actions of G, and
Gy. Therefore, we only need to prove that o cancels decoupled fractions, for which purpose we
rewrite it as the sum of three terms

a=((z,9) =% — W)+ (Ve = [Ga] - 72) + (0 =[Gy - W)-
Let H be a regular fraction that admits a Galois decoupling. Then

e H H,, — H,, = 0 by definition of the pseudo-decoupling (vz,7y)-

zy)
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e For 0, in G, we compute H,, 5 .o, = H,, —0,(H,,) thanks to Lemma 3.24. As H,, is
in k(x), it turns out that H,, _, ., is zero. Since ﬁ Y ooreG, Ve=0wVz) = Vo =[Gz Ve,
we obtain that v, — [G4] - 7, cancels H.

e The argument for v, — [G,] - v, is similar.

Thus H, = 0, which concludes the proof. O

We finish this subsection with two important lemmas.

Lemma 5.13. If the pair (vz,7y) is a pseudo-decoupling of (x,y), and a and o/ are 0-chains
that cancel decoupled fractions, then (v, + o,y + ) is also a pseudo-decoupling of (z,y).

Proof. Let H(X,Y,t) be a regular fraction that admits a Galois decoupling. By definition of «
and o/, we have H, = H, = 0, which by linearity proves that H,, 1o = H,, and H, +or = Hy,.
Since (7x,7y) is a pseudo-decoupling of (x,y), the equation H(, ) = H,, +H,, = Hy, 1o+ Hy o
is a Galois decoupling of H proving that (7, +a, v, +¢’) is also a pseudo-decoupling of (z,y). O

Lemma 5.14. If two 0-chains vy, and v, satisfy the following conditions

e (z,y) =7+
e for all o, € G, the O-chain o - v, — Vo cancels decoupled fractions
e for all oy € Gy, the 0-chain oy - vy — 7y cancels decoupled fractions

then (vz,7y) is a pseudo-decoupling of (x,y).

Proof. Let H be a regular fraction which admits a Galois decoupling. As H(,,y = H,, + H,,
from the first point, one only needs to show that H,, is in k(z) and that H,, is in k(y). Let
oz be in Gy, then 0.(H,,) = Hy,n, = Hig,yy—vy,)4vy, = Ho, because (o4 -7z — 7,) cancels
decoupled fractions. Therefore, the Galois correspondence proves that H., is in k(x). The
same argument proves that M, is in k(y). O

5.4. Graph homology and construction of the decoupling. Our construction of a decou-
pling relies on the graph structure of the orbit O, and in particular on the formalism of graph
homology.

5.4.1. Basic graph homology. We recall here the basic definitions of graph homology and the
properties that will be used in the construction of the decoupling (see [Gib81] for a comprehen-
sive introduction to graph homology).

Definition 5.15. A graph (undirected) is a pair I' = (V, E') where V' is the set of vertices and
E C {{a,d'}|a,a’ € V,a # a'} is the set of edges. A subgraph of T is a graph I'' = (V’, E’) such
that V/ C V and E' C E.
An oriented graph is a pair I' = (V, E™) where V is the set of vertices and E* C {(a,d’)|a,d’ € V,a # da'}
the set of arcs (oriented edges) such that if (a,a’) € ET then (a,a) ¢ ET. An orientation of
a graph I' = (V, ) is an oriented graph I'" = (V, ET) such that the map ET — F which maps
(a,a’) to {a,a’} is a bijection.

Note that every graph can be given an orientation by freely choosing an origin for each edge.
Conversely, given an oriented graph I' = (V, ET), one can consider the associated undirected
graph (V, E) where E = {{a,d’} such that (a,a’) € ET or (a’,a) € ET}. In what follows,
the notions of graph homomorphism, path, connected components concern the structure of
undirected graph.
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Example 5.16. The graphs considered here are the graph induced by the orbit (O, ~) still
denoted O, and the two subgraphs of the orbit restricted to each individual type of adjacency,
which are 0% = (O, ~%) and OY = (O, ~Y).

We now introduce the chain complex attached to an oriented graph.

Definition 5.17. Let I' = (V, E") be an oriented graph and K a field. The space Cy(T) of
0O-chains of T is the free K-vector space spanned by the vertices of V. Similarly, the space C;(I")
of 1-chains of T is the free K-vector space spanned by the arcs of ET. We turn C,(T') into a
chain complex by defining the boundary homomorphism, which is the K-linear map defined by

0: Cl(F) — Co(r)
(a,d') € EY +— d —a

As the reader notices, the chain complex has only been defined for an oriented graph.
Nonetheless, if (V, E{") and (V, Ey) are two orientations of a graph T, it is easy to see that
the associated chain complexes are isomorphic [Gib81, 1.21 (3)]. When the context is clear, we
shall abuse notation and define a chain complex C,(I") of a graph I" as the chain complex of the
oriented graph (V, ET) where E* is an arbitrary orientation of T'.

We make the following convention. Let a and a’ be two adjacent vertices of I'. Given an
orientation ET of I', we abuse notation and denote by (a,a’) the 1-chain

n_ (a,a’) if (a,a’) is in ET
(@.a) = { —(d,a) otherwise

This notation is extremely convenient, because for two adjacent vertices of I', the boundary
homomorphism always satisfies 9((a,a’)) = @’ — a and (a,d’) = —(d/, a).

Definition 5.18. Let I' = (V, E™) be an oriented graph. A 1-chain ¢ which satisfies d(c) = 0
is called a 1-cycle.

Example 5.19 (1-chain induced by a path). Let I' = (V, E) be a graph and let (a1, a2, ..., ani1)
be a path in I, that is, a sequence of vertices such that a; is adjacent to a;41 for i =1,... n.
Given an arbitrary orientation E1 of I', we define the 1-chain p = """ (a;, ai4+1), and we call it
the 1-chain induced by the path (a1, a2, ..., an+1). By telescoping, d(p) = ant1 — a1, therefore if
the path is a loop of I" then p is a 1-cycle, hence the name. Every 1-cycle is a linear combination
of 1-cycles induced by the simple loops of the graph, that is, loops with no repeated vertex (see
[Gib81, Theorem 1.20]).

We recall that a graph is called connected if any two vertices are joined by a path. The
reader should note that the notion of path does not take into account a potential orientation
of the edges. Every finite graph is the disjoint union of finitely many connected components
which are maximal connected subgraphs. Any orientation of a graph induces by restriction an
orientation on its subgraphs and thereby on its connected components. With this convention,
it turns out that the chain complex of a finite oriented graph is isomorphic to the direct sum of
the chain complexes of its connected components. Hence, it is harmless to extend Theorem 1.23
in [Gib81] to the case of a non-connected graph.

Proposition 5.20. LetT" = (V, E) be a graph, and let (T'; = (V;, E;))i=1,...» be its connected com-
ponents. Define the augmentation map e: Co(I') — K" by (3 ey Aa@) = (X ey Ma)i=1,..r-
Then, Kere = Im 0.
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Let I' = (V, E) be a graph and let o be a graph endomorphism of T'. Fixing an orientation
ET on T, we let o act on the space of 0 and 1-chains by K-linearity via:

o-a=oc(a) for any a in V and o - (a,a’) = (o(a),o(a’)) for any (a,a’) in E*.

The reader should note that the action on the space of 1-chains uses the convention on the
arc notation introduced at the beginning of this subsection. It is easily seen that the action
of a graph endomorphism of I' is compatible with the boundary homomorphism of the chain
complex C,(T).

Proposition 5.21. Let I' = (V, E) be a graph and o be a graph endomorphism of I'. Then o
induces a chain map on C.(I'), which means that the following diagram of K-linear maps is
commutative.

C1(T) —2— Co(T)

I I

C1(I) —2= Co(T)

5.4.2. The chain complex of the orbit and the algebraic description of bicolored loops. We now
apply the homological formalism to the graphs associated with the orbit O with base field C
(see Example 5.16). We fix once for all an orientation on O which induces an orientation on the
subgraphs O and O0Y. Quoting [Gib81, Remark 1.21],“ the choice of this orientation is just a
technical device introduced to enable the computation of the boundary homomorphisms”. We
denote by 0 (resp. 0%, 9¥) the boundary homomorphism on the connected graph O (resp. the
non-connected graphs O, OY). Moreover, we denote by ¢ (resp. €%, €¥) the augmentation map
defined in Proposition 5.20 for O (resp. O%, OY).

Lemma 5.22. The C-vector space C1(O) is equal to C1(O%) @& C1(OY) and the boundary
homomorphism O coincides with 0% + 0¥ where one has extended O (resp. 0Y) by zero on

C1(OY) (resp. C1(O%)).

Proof. Every edge {a,a’} of O is either an z-adjacency or an y-adjacency, and not both. There-
fore, the set of arcs of an orientation of O is the disjoint union of the arcs of the orientations
of 0% and Y, which thus induces a direct sum decomposition on the free vector space C1(0O).
The decomposition of the homomorphism 0 follows directly. U

The action of the Galois group G on the vertices of O preserves the adjacency types of the
edges (see Lemma 3.7). Therefore G acts by graph automorphisms on O% and OY. Thus,
Proposition 5.21 allows us to define the action of G on the chains of O% and OY in a compatible
way with the decomposition of Lemma 5.22.

Proposition 5.23. Let 0 be in G. Then o induces automorphisms of the chain complexes
Ci(0),C(O%) and C(OY) such that 0 0 0* = 0" oo and 0o d¥ =¥ oo.

The boundary homomorphisms 9%, 0¥ allow us to rewrite the 0-chains induced by bicolored
loops as boundaries. If « is the 0-chain associated to a bicolored loop as in Example 5.4, then
it is easily seen that a = 9*(p) = 9Y(—p) with p the 1-chain as in Example 5.19. The homology
formalism generalizes the above description to any 0-chain that cancels decoupled fractions.

Theorem 5.24. Let a be a 0-chain. Then the following statements are equivalent:

(1) « cancels decoupled fractions.

(2) €*(a) =0 and e¥(a) = 0.
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(3) There exists a 1-cycle ¢ of O such that a = 0%(c).
(3") There ezists a 1-cycle ¢ of O such that a = 9Y(c).

Proof. (1) = (2): Let a be a 0-chain that cancels decoupled fractions. The connected compo-
nents of the graph O% are of the form OF = {(v/,v’) € O |u' = u} for the distinct left coordinates
u of O. Therefore, we decompose o = Y v, where a, = >, A% (u, ) is a 0-chain with ver-
tices in Of. Now, we consider the family of monomials (X*); which are obviously decoupled.
Since « cancels decoupled fractions, the following holds for all ¢:

0= (X=X = 3 &Y =S 3 | =3 )

u u v/ (u)EOT u v /[ (u')eOz

Because the elements u are distinct, this is a Vandermonde system, in which the unknowns
are the (), therefore we deduce that they are all equal to 0. Thus, e*(a) = 0. The same
argument yields ¥(a) = 0.

(2) = (3) and (3’): Assume that ¢*(a) = 0 and €¥(«) = 0. By Proposition 5.20, there exist
¢ in C1(O%) and ¢y in C1(0Y) such that 0%(c;) = @ and 0Y(¢y) = o. Moreover,

0(cy — ¢y) = 0(cz) — O(cy) = 0%(cg) — 0 (cy) = — a = 0.

Therefore, ¢ = ¢; — ¢, is a 1-cycle of O which satisfies 0%(c) = a and 0Y(—c) = .

(3) & (3’): Let ¢ be a 1-cycle of O, then 0%(c) = 9(c) — 0Y(c) = 0Y(—c). This proves the
equivalence.

(3) = (1): Assume that o = 9%(c) = 9Y(—c) for ca cycle of O. Now, let e = ((u,v), (u,v")) be
an arc of 0% and take F'(X,t) € C(X,t). Then Fyu(oy = F(u,1/S(x,y)) — F(u,1/S(x,y)) =
Therefore, by C-linearity, this implies that F, = Fye() = 0. Symmetrically, if G(Y,t) € C(Y, )
then we deduce that Go = Ggy(—.) = 0, which concludes the proof. (]

We now apply this pleasant characterization to prove our earlier claim that 0-chains that
cancel decoupled fractions are induced by C-linear combinations of 1-cycles induced by bicolored
loops.

Proof of Proposition 5.5. Let a be a 0-chain which cancels decoupled fractions, then by (3) of
Theorem 5.24, we can write it @« = 0%(c¢) = —9Y(c) with ¢ a 1-cycle of O. Since the 1-cycles
induced by the simple loops of O generate the 1-cycles of O (see [Gib81, Theorem 1.20]), we
can assume without loss of generality that ¢ is induced by a simple loop p = (a1, as, ..., ay) of
0.

Moreover, if consecutive arcs €;,...,€415-1 = (4, @i11), (@i+1, @ir2)s - -+, (Qjak—1,054k) Of p
are of the same adjacency type (say x), then since the monochromatic components of O are
cliques, (a;,a;1x) is an arc of O. Therefore, 0%(e; + -+ + €;4p—1) = O%(e; + -+ + €j4p—1 +
(ajsk,a;)) + 0% ((ai,a;1)), the first term being zero because it is the boundary of a monochro-
matic cycle. The exact same reasoning can be done for consecutive y-adjacencies. Thus, replac-
ing consecutive arcs of the same adjacency type by one single arc of the same adjacency type,
we can assume without loss of generality that ¢ is the 1-chain induced by a simple bicolored
loop. This proves that « is the 0-chain induced by a bicolored loop, finishing the proof. U

5.4.3. Construction of the decoupling. We now use the results of the previous subsections to
construct a pseudo-decoupling of (z,y) on a finite orbit O. For p = (p,)eco a family of 1-chains,
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we consider the 0-chains
Vx (p) = E ay pa and 7 = ax pa
IOI T Z

where all sums run over 0. The C-linearity of the boundary homomorphisms implies that
7, and 7y, are C-linear morphisms from C1(0)® to Cp(0). We recall that w is the 0-chain
|—(19‘ > aco @ defined in Lemma 4.4.

Theorem 5.25 (Decoupling theorem). Let p* = (p%)aco and p¥ = (p4)aco be two families of
1-chains, that are such that for all a € O one has

e®(OE) + (z,y) —a) =0 and ¥ (O(p) + (x,y) —a) = 0.
Then, the pair (w + vz (p"), vy (pY)) is a pseudo-decoupling of (z,y).

Proof. Let (p%)aco and (pa)aco be two families that satisfy the conditions of the theorem. For
all a in O, we have *(9(p)+(x,y)—a) = 0. By Proposition 5.20 applied to I' = OF, there exists
cr e C’l((’)x) such that 9(c%) = 9(p?) — a + (z,y), which rewrites as d(pE — %) = a— (z,y). We
denote by ¢® the family of 1-chains (¢?),. Note that ay( 7) = 0 for all a in O so that v, (c*) = 0.
Similarly, there exists a family ¢ = (c)aco in C1(O¥)C such that we have d(py—cl) = a—(x, %)
for all a in O and ~,(c¥) = 0. Therefore, using the linearity of v, and ~,, we find

(W +72(p"), w(PY)) = (W +72(p” — ), v (" — ) + (Y — ) — (»* —c"))).

By construction of ¢ and ¢, the 1-chain (p§ — ci) — (p% — ¢%) is a l-cycle for all a. Hence,

by linearity of the boundary homomorphim 0, the 1-chain —ﬁ S ((ph—ct)— (pE—ct))isa

1-cycle. Hence, by (3) of Theorem 5.24, the O-chain v, ((p¥ — ¢¥) — (p* — ¢*)) cancels decoupled
fractions.

Therefore, by Lemma 5.13, it only remains to show that the pair (w+~,(p* — "), v, (p* —c*))
is a pseudo-decoupling of (z,y). Denote by ¢ = (¢4)aco the family of 1-chains p* — ¢*. Then,

— (z,y) = 0(py — cz) = 0(¢a) = 0(¢a) + 0" (qa)-
Summing this identity over the orbit yields
D a—10I(x,y) =Y 0%(qa) + > 9 (qa);
acO acO acO
which can be rewritten as
(@,9) = (w+7(a)) +wy(a)
In order to conclude that the pair (w + v(q),7y(¢)) is a pseudo-decoupling, we just need
to check that, for all o, in G, the 0-chain o, - (w + 72(¢)) — (w + 72(q)) cancels decoupled
fractions, and that, for all o, in G, the 0-chain oy, - v,(¢) — 7y(q) cancels decoupled fractions

and apply Lemma 5.14. Let o, be in G,. Then by compatibility of G with the boundaries
(Proposition 5.23), we compute

Og - fY:B = Za Og Qa
aEO

= |O| Z QJza |O| Za Oz " 4a — q(fma)

aeO aceO
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The homomorphism o, is a bijection on the vertices of O, so the first sum on the right
hand-side is equal to 7, (q) so that

(5.1) 0z V() — V2(q) = 0¥ <—|(19| > (00 Ga— qazu)) :

acO

Now, that since o, fixes xz, we have o, - (x,y) = (x,v) for some v. Thus there exists ¢ in

C1(O7) such that o, - (z,y) — (x,y) = 9(c). Then, for all a € O, we have
a(U:v “Ga — Qoga Tt C) = (Ua: G — Oy - (xuy)) - (Jz ca = (m,y)) + (093 : (m,y) - (m,y)) =0.
Therefore, the 1-chain 0, - g4 — Gy,.o + ¢ is a 1-cycle for all a so that —ﬁ Y0204 — oy + )

is also a 1-cycle by linearity of the boundary homorphism 0. Moreover, since ¢ is in C1(O%), we
have 0Y(0 - ¢a — @op-a) = 0Y(0z - Ga — Qop-a + ) for all a in O, so from (5.1), we conclude that

02 Yz () =Yz (q) = 0Y <—ﬁ Y ul02 0 —Gopa + c)) Theorem 5.24 implies that 0,7, (¢) —72(q)
cancels decoupled fractions. Finally, as w is fixed by o,, we deduce that o, - (w+v.(q)) — (w+
Y2(q)) = 02-72(q) —72(q) cancels decoupled fractions. The proof for o7, (q) —7,(¢) is completely
analogous. O

We can now prove the existence of a decoupling of (z,y) for any finite orbit.

Proof of Theorem 5.10. The graph O is connected. Hence, for every a € O, there exists a path
from (x,y) to a. Denoting by p¥ = py the associated 1-chain, we have 9(p*) = a — (x,y) (see
Example 5.19). Therefore, the families (p*).co and (pi)qco satisfy the assumptions of Theo-
rem 5.25 leading to the existence of a pseudo-decoupling. Theorem 5.12 establishes the existence
of a decoupling obtained from a pseudo-decoupling concluding the proof of Theorem 5.10: if
the orbit is finite, the pair (x,y) always admits a decoupling in the orbit. U

In [BMPF*22, Definition 6.1], the authors introduce the notion of a multiplicative decoupling
of a regular fraction. In our context, we say that a regular fraction H(X,Y’) has a multiplicative
Galois decoupling if and only if there exists a positive integer m such that

H(X,Y)™ = F(X,)G(Y,t) + K(X,Y,t)P(X,Y, 1),

for some rational fractions F(X,t), G(Y,t) and a regular fraction P(X,Y,t).

Theorem 5.10 yields a decoupling of (z,y) with 0-chains 7,7, and « having rational coeffi-
cients. Let d be the common denominator of the rational coefficients of 7,7, and « which is
easily seen to divide the size of the orbit in the proof of Theorem 5.25 when the input 1-chains in
p* and pY all have integer coefficients. Then, the O-chains dv,, d7y, da have integer coefficients.
For such chains, one can define a multiplicative evaluation:

For a 0-chain ¢ = }_  cuo(u,v) with integer coefficients, define

HM =T H(u,0,1/8(x, ).

U,V

As a direct corollary of the existence of a decoupling in the orbit, the following lemma gives
an explicit procedure to test and construct, when it exists, the multiplicative Galois decoupling
of a regular fraction H.

Lemma 5.26. The following statements are equivalent:

e H(X,Y,t) has a multiplicative Galois decoupling.
e There exists a a positive integer m such that (Hg&"l)m =1.



GALOISIAN STRUCTURE OF LARGE STEPS WALKS IN THE QUADRANT 37

Proof. From Proposition 3.23, the regular fraction H(X,Y,t) admits a multiplicative Galois
decoupling if and only if there exist a positive integer m, f(z) € k(x) and g(y) € k(y) such that
Hpy = f(@)g(y).

Let us assume that H admits a multiplicative Galois decoupling and let m be a positive integer
such that H(X,Y)" = F(X)G(Y) + K(X,Y,t)P(X,Y,t) for some rationals fractions F, G and
a regular fraction P. By multiplicative evaluation of the previous identity on da, we find that
(Hgg)é“l)m = (F(X)gngl)m(G(Y)énotﬂ)m. It is clear that da is a 0O-chain with integer coefficients
that cancels decoupled fractions. By Proposition 5.5, the chain da is a Z-linear combination of 0-
chains induced by bicolored loops. One proves easily by a multiplicative analogue of Example 5.4
that if § is a 0-chain induced by a bicolored loop then F(X )g‘ul = G(Y)g‘“1 = 1 which concludes
the proof of the first implication.

Conversely, if there exists a positive integer m such that (HE;UI)m =1, the decoupling d- (z,y) =
dvz + dyy + da yields by multiplicative evaluation

mul m dm mul\" mul )"

(Hd(x,y)> = Hgy)™ = (Hd%> (Hd%> '
By definition of the decoupling of (z,y) =7z + 7y + «, we find that o - dvy, = do - 7, = dv, for
all 0 € G;. A multiplicative analogue of Lemma 3.24 implies easily that Hg%l is left fixed by

G, so that H;%‘f belongs to k(x). A similar argument shows that Hg%l belong to k(y) which
concludes the proof. O

5.5. Effective construction. The evaluation of a regular fraction at a vertex of the orbit, that
is, at a pair of algebraic elements in K might be difficult from an algorithmic point of view since
this requires to compute in an algebraic extension of Q(x,y). This is however the cost we may
have to pay in our decoupling procedure if we choose random families of 1-chains satisfying the
assumptions of Theorem 5.25.

In this section, we show how, under mild assumption on the distance transitivity of the graph
of the orbit, one can construct a decoupling in the orbit expressed in terms of specific 0-chains
that we call level lines. These level lines regroup vertices of the orbit that satisfy the same
polynomial relations. Therefore, one can use symmetric functions and efficient methods from
computer algebra to evaluate regular fractions on these level lines (see Appendix B).

Definition 5.27. Let a be a vertex of O. We define the z-distance of a to be dg(a) =
inf{d(a,a’)|a" ~* (x,y)}, that is, the length of a shortest path in O from a to the clique
(ma )

Such a shortest path (go, g1,...,9r), that is, g, = a, go ~* (z,y) and d;(a) = r, is called an
x-geodesic for a. Note that we have d (g;) =i for all i = 0,...,r. We denote by P¥ the set of
1-chains associated with z-geodesics for a as in Example 5.19.

The z-level lines Xp, X1, ... are defined by X; = {a € O|d,(a) =i}, and we associate to the
level line X; the O-chain X; = > 4, a. Analogously, we define the y-distance dy, the set Pg of
y-geodesics for a, the y-level lines )y, V1, ..., and denote by Y; the 0-chain associated with the
y-level line ).

The level lines can be represented graphically, as in Figure 5.3, or in Section5.6 or in the
examples of Appendix C. The level lines and geodesics are our key tools to construct relevant
collections of 1-chains satisfying the conditions of Theorem 5.25. First, the boundaries of a
geodesic are easy to express.
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FIGURE 5.3. The level lines for the orbit 012

Lemma 5.28. Let a be a vertex of O and (9o, 91,---,9r) an x-geodesic for a. Then g; ~Y g;—1
if and only if i is odd. Similarly, for (go,g1,--.,9r) an y-geodesic for a, then g; ~* g;—1 if and
only if 1 is odd.

Proof. Let g = (90,91, --,9r) be an z-geodesic of length 7. Assume that there exists i such
that ¢; ~* giy1 ~® giyo. By transitivity of ~*, this implies that g; ~* g¢;12, contradicting
the minimality of the geodesic g. Similarly, if there exists ¢ such that g; ~Y g1 ~Y gito
then g; ~Y g;49, also contradicting the minimality of the geodesic. Therefore, the adjacency
types of the edges of the geodesic alternate. Finally, if go ~* g1, then this also contradicts
the minimality of the geodesic because then (z,y) ~* g;. This fixes the starting parity of the
alternating adjacency types of edges of the geodesic, and thus g; ~¥ g;_1 if and only if 7 is odd.
The case of an y-geodesic is symmetric. ([

Corollary 5.29. Let a be a vertex of O, (9o, 91, ---,9r) an x-geodesic for a and g its associated

1-chain, then 0Y(g Z 9i — gi—1- Analogously, for (go,g1,-.-,9r) a y-geodesic for a then
1<i<r
i odd
= Z 9i — gi-1-
1<i<r
1 odd

Recall from Section 5.4.1 that any graph automorphism 7 of O acts on the vertex a of O
coordinate-wise and that we denote this action 7 -a. We extend the action of 7 to any path
(a1y...,an+1) as follows

T(a1,. . apt1) = (T a1, .., T Apt1)-

Note that this action is compatible with the action of graph automorphisms on 1-chains defined
in Section 5.4.1. Indeed, if p is the 1-chain associated with the path (aq,...,a,+1) as in Example
5.19 then 7 - p is the 1-chain associated with the path 7 (a1,...,ans1).

The following lemma shows that the geodesics and level lines satisfy some stability properties
with respect to the action of elements of G, and G, viewed as subgroups of the group of graph
automorphisms of O.
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Lemma 5.30. Let o, be in G, and a in O. Then d,(o, - a) = dg(a). Moreover, if (go,- .., 9r)
is an x-geodesic for a, then o, - (go,...,gr) an x-geodesic for o, - a. Analogously, if oy is in Gy
and a in O, then dy(oy - a) = dy(a), and if (go, ..., gr) an y-geodesic for a, so is oy - (go,- -, r)
for oy, -a.

Proof. Assume that d,(a) = r. Then there exists an x-geodesic for a that is (go,91,--.,9r)
with g, = a. Apply the graph automorphism o, to each of the vertices of this path. Then
(290,02 G1,---,05 gr) With o, - g, = 0, - a is a path of the orbit. By definition, g9 ~* (z,y),
thus o, - g9 ~* (z,y) since z is fixed by G,. Therefore, d;(o; - a) < r = d,(a). Since o, is an
automorphism, we conclude that d (o, - a) = dg(a). We finally deduce that o, - (go, ..., 9r) is
a x-geodesic for o - a. O

This observation leads us to define two subgroups of automorphisms of the graph 0. We
denote by Aut,(O) (resp. Aut,(O)) the subgroup of graph automorphisms of O that preserve
the z (resp. y)-distance and the adjacency types I. By definition, any element 7 in Aut,(0)
maps an z-geodesic for a onto an z-geodesic for 7-a. Moreover, a graph automorphism preserve
the z-distance if and only if it induces a bijective map from X; to itself for each i. Analogous
results hold for Aut,(O).

Lemma 5.30 implies that G, (resp. Gy) is isomorphic to a subgroup of Aut,(O) (resp.
Aut,(0O)). The benefit of the groups Aut,(O) and Aut,(O) is that, unlike G, and Gy, they
only depend on the graph structure of the orbit, and thus are more easily computable. Note
however that not all such graph automorphisms come from a Galois automorphism (see for
instance the Hadamard example in Section 5.6.3). We now state an assumption on the distance
transitivity of the graph of the orbit.

Assumption 5.31. Let a and o’ be two pairs of O. If d,(a) = d,(a’), then there exists o, in
Aut,(O) such that o, -a = /. Similarly, if dy(a) = dy(a’), then there exists o, in Aut,(O) such
that oy(a) = ’. In other words, Aut,(O) (resp. Aut,(O)) acts transitively on X; (resp. ;) for
all 7.

This assumption has been checked for all the finite orbit types appearing for models with
steps in {—1,0,1,2}2 as well as for Hadamard and Fan-models (see the examples in Section 5.6
or Appendix C). However, Assumption 5.31 does not always hold as illustrated in the following
example.

Example 5.32. Consider the weighted model described by the Laurent polynomial S(X,Y) =

(X + % +Y+ %)2 The kernel polynomial K is an irreducible polynomial of degree 4 in X
and in Y. Therefore, the cardinal of ) is 4 and the only right coordinate of the elements in )
is y. Moreover, each element of ) is z-adjacent to three distinct elements in ) so the cardi-
nality of )y is 12. Now, it is easilX seen that the I'igl}/t coordinates of vertices in Yy U ) are
the roots of the polynomial Res(K(X,y,1/S(z,y)), K(X,Y,1/S(x,y)), X). Since z and y are
algebraically independent over C, its irreducible factors in C(z,y)[Y] are (Yy — 1), (—y+Y)
(Y2xy +2Y 2?2y + Yoy’ + Yo +2Yy + xy) and (szy —2Y 2%y — 3Ywy? —3Yx — 2Yy + xy).
This proves that the cardinality of the set V of right-coordinates of elements in ) is 5.

If Assumption 5.31 were true for this model then the transitive action of Aut,(O) on W
implies that the sets K, = {(u,w)| w =v and (u,w) € Y1} C Y1 for v in V are all in bijection.
Indeed, K, is equal to {a € O |a ~¥ (u,v)}NY; for some (u,v) € K,,. Therefore, as Assumption
5.31 provides o, in Aut,(O) such that o, - (u,v) = (v/,v") € K, its restriction to K, gives an

lOne can show that this last condition is redundant with the condition on the distance preservation.
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embedding into K/, because o, preserves the y-adjacencies and the y-distance. By symmetry,
this proves that K, and K, are in bijection. Since these sets form a partition of ), this would
imply that the cardinality of V (5) divides the cardinality of }; (12). A contradiction.

We now show that Assumption 5.31 is sufficient for (x,y) to admit a decoupling in terms of
level lines.

Lemma 5.33 (Under Assumption 5.31). Let a and o’ to be two vertices with d,(a) = dy(a’).
Then there is a bijection between Py and P%. Analogously, if a and o' satisfy dy(a) = dy(a’),
then there is a bijection between Py and Py,

Proof. Use Assumption 5.31 to produce o, in Aut,(O) such that o,(a) = a’. This o, induces a
bijection between Py and Pg ., = Py, by Lemma 5.30 and the compatibility between the action
of 0, on x-geodesics and its action on the associated 1-chains. O

The following theorem gives a decoupling of (z,y) in terms of level lines.
Theorem 5.34 (Under Assumption 5.31). Define the following 0-chains:
1 X; X1 1 Y; Y1
o= S S () et =i S (-
] ; i 2 X 1% Yol ; 12 Vil 1Yi-al)

1<5<i 2 1<5<q
J odd j odd

Then (x,y) = (w + vz) + vy + « is a decoupling of (x,y) in the orbit (with w = ﬁ Y oaco @)-
Proof. Consider the two families of 1-chains (p%).co and (p4)eco defined for a in O as

1 1
v = and = — .

9ePg gePY

For all g = (go,...,gr) in PZ, we have 0(g) = a — go with go ~* (x,y). Then, e*(d(g) — a +
(z,y)) = 0. Thus, we find by linearity that *(9(p%) — a + (x,y)) = 0. The same argument
shows that €¥(9(ph) — a + (x,y)) = 0. Therefore, both families of 1-chains (p%)sco and (p4)eco
satisfy the conditions of Theorem 5.25, which thus states that if we take

1 1
] > 0¥(py) and vy, = 0] > oY),
acO acO
then the pair (w + 7;,7y) is a pseudo decoupling. As the geodesics are stable under the action
of their respective Galois groups by Lemma 5.30, it is also a decoupling.

Therefore, we are left to prove that v, and 7, admit the announced (pleasant) expressions.
We only treat the case of v,, the case of y being totally symmetric.

First, note that, by Lemma 5.33, the cardinality of P¥ (resp. Py) depend only on the z-
distance (resp. y-distance) of a. For i a non-negative integer, we denote by m¥ (resp. m;) the
cardinality of PZ (resp. Pg) for any a such that d,(a) =i (resp. dy(a) = 7). The expression of
the boundary of a geodesic (Lemma 5.29) combined with the partition of O into z-level lines

yields
1 1 1
Vo = —@Z Z 0 (pg) = _@ZW Z Z Z (95 — 9j-1) -
i>0 a€X; i>0 ' a€X; geP? j odd
J<i

If we denote

. 1
S;:WZ Zgjv

v aeX,; gePx
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then ~y, rewrites as

1 D
%= 1gr 2. 2 5~ S

i>1 j odd
J<i
First, observe that, for any z-geodesic (go, ..., gi), the j-th component g; has z-distance j,

so the vertices appearing in 5’; with nonzero coefficients are in X;. Thus, we can write

Si=>"Xb.

bEXj

Let o, be in Aut;(O). Remind that o, induces a bijection on each z-level line and maps
bijectively Py and P7 ., for all a. Thus, we find

. 1 1 1 ]
o Si = WZ Y ouegi= WZ > (oa-9); = WZ Y 9= S

v a€X; gePE v aeX; gePE v acX; gePE, .,

Under Assumption 5.31, the group Aut,(O) acts transitively on X;. Since S; is fixed by

the action of Aut,(Q), one concludes easily that all the coefficients )\Z’j are equal to some
scalar A;- and that S]"- = )\;X j (). To compute the value of )\é-, we recall the existence of the
augmentation morphism € : Cp(O) — C which associates to a 0-chain the sum of its coefficients.
We apply ¢ to each side of (*). On the one hand, (S}) = >, . |Pilg\ D ogeps 1 =2 4ex, 1= |X].

On the other hand, e(AéXj) = A;]Xﬂ. Therefore, we deduce )\3 = Jfé’k and the announced
J

expression for the decoupling follows. O

To conclude, we have defined in this section a distance-transitivity property that is only
graph-theoretic. When this property is satisfied by the orbit-type, it leads to a decoupling
expressed in terms of level lines. As described in Appendix B, the evaluation of a regular
fraction on a level line is efficient from an algorithmic point of view and so is our procedure
for the Galois decoupling of a regular fraction. In the following section and in Appendix C,
we easily check Assumption B on various orbit-types and produce the associated decoupling in
terms of level-lines.

5.6. Examples. In this last subsection and Appendix C, we check Assumption 5.31 and unroll
the construction of the decoupling of the previous section for all the finite orbit-types of models
with steps in {—1,0, 1,2}2, namely with orbits O12, O13, O12 as well as for the cyclic models, the
Hadamard models and the fan models. We summarize the results of this section and Appendix
C on the decoupling of XY in the following proposition.

Proposition 5.35. The reqular fraction XY does not decouple for any weighted models with
orbit-types Hadamard (see below) nor for the family of the fan-models (see Appendiz C). The
regular fraction XY does not decouple for unweighted models with steps in {—1,0,1,2}? with

orbit-types O1g, Ors. The fraction XY decouples for the model Gy with any A.

5.6.1. Cyclic orbit. Assume that the orbit is a cycle of size 2n, which is the orbit-type of any
small-steps model with finite orbit. The graph of the orbit looks as follows, where we have
labeled vertices from 0 to 2n — 1. We represent both z-level lines and y-level lines.



42 GALOISIAN STRUCTURE OF LARGE STEPS WALKS IN THE QUADRANT

Xo X1 Xn_2 Xn—1 Yo Yy Yo o Wil
1 T E e om—312m—1 2t 4 fooo- —on—2fon—1
O 2 1-----1 2n—4+2n -2 Ot+—1] f(-----1 —2n—5+12n—3

Each of the z-level lines has 2 elements, so does any y-level line. The reader can check that the
permutation o® = (0,1)(2,3)...(2i,2i+1)...(2n—1,2n —2) which corresponds to a horizontal
reflection on the figure on the left-hand side, induces a graph automorphism of Aut, (), that
is preserving the x-distance and the type adjacencies. Moreover, o” acts transitively on each x-
level line. As the situation is completely symmetric for y-level lines, this proves Assumption 5.31
for cyclic orbits. In this section, we take the convention that the exponents on the permutation
indicate which type of level lines these automorphisms stabilize. According to Theorem 5.34,
we find:

@)= o-5 S e-NE -0 ]~ (5 S e-H0-Y0)| +a.

j odd 7 odd

In the above equation and in the rest of the section, we only give the explicit expressions
of 7z,7, and we write them between parenthesis according to their order in the expression
(z,y) =7z +7y+a. The above decoupling equation corresponds to the decoupling construction
obtained for small steps walks in [BBMR21, Theorem 4.11].

5.6.2. The case of O12. Below are the x and y-level lines for the orbit type Ois:

Consider the following permutations of the vertices of the orbit: 7% = (12)(45)(67)(910)(811)
the vertical reflection on both sides, 7% = (03)(16)(27)(411)(58) the horizontal reflection on
the left-hand side, 7% = (012)(345)(6108)(7119) the 27 rotation on the right -hand side. The
reader can check that these automorphisms are elements of Aut,(O) or Aut,(O) according to
their exponents and that their action on the corresponding level lines is transitive.

Therefore Assumption 5.31 holds for the orbit type O12. The cardinality of O is 12 and
one can write w = 1—12 (Xo+ X1 4+ X9 + X3). Thus, according to Theorem 5.34, the decoupling
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equation is

2 (X Xg\ 4+4+2(Xo X\ 346(¥ Wi\
- 12 2 4 12

3 3
_ ‘<0 lfl 1(2 Y() Y1
= ( 5 TR + 3 ) + < 11 + a.

5.6.3. Hadamard models. The notion of Hadamard models has been introduced by Bostan,
Bousquet-Mélou and Melczer who proved that these models are always D-finite [BBMM21,
Proposition 21]. Hadamard models are characterized by the shape of their Laurent polynomial:
S(X,Y)=P(X)Q(Y)+ R(X) for P, Q and R three Laurent polynomials.

The Hadamard models form an interesting class because their orbit is always finite and
in the form of a cartesian product. Indeed, [BBMM21, Proposition 22] yields the existence
of distinct elements zq,...,x,—1 and yo,...,yYm—1 in K with g = = and yp = y such that
O={z;]1<0<n—-1} x{y;]0 <j<m—1}. As a consequence, the orbits of the Hadamard
models, even though their size might be arbitrarily large, are always of diameter two. This
means that the distance between any two vertices is at most two as illustrated below:

These orbit-types are very symmetric. The z-level lines Xy is {(z,y;) |0 < j < m — 1} while
X ={(zi,y;)|0<j<m—1and 1 <i<n—1}. Thus, |X| =m and |X|| = (n — 1)m. It is
easy to prove that any element of Aut,(O) is of the form ¢ : (z4,y;) = (o(2;),7(y;)), for 7 a
permutation of the set {y; |0 < j < m — 1} and o a permutation of {z; |0 < i < n — 1} such
that o(z) = «. An analogous description holds for the y-level lines and Aut,(O) proving that
the Hadamard models satisfy Assumption 5.31 and that Aut,(O) ~ S,_1 x Sy, and Aut,(O) ~
Sp X Sm—1. Theorem 5.34 gives the following decoupling:

e . )

nm m  m(n—1) m n  n(m-—1)

1 -1 1 1 1
() (5 o) (1) ()
m nm nm m n

with w = - (Yp + 7). Note that any Hadamard model where degy K > 1 and degy K > 1
always contains a bicolored square, so the fraction XY never admits a decoupling (see Exam-
ple 5.6).

The complete description of the groups Aut,(O) and Aut,(O) obtained above is particularly
useful to construct examples of orbits whose graph automorphisms are not necessarily Galois
automorphisms as illustrated below.
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Example 5.36. Consider the nontrivial unweighted model defined by S(X,Y") = (X + %) (Y" + %)
Then by Proposition 22 in [BBMM21], the orbit has the form

1 i
— 'y, '= fori=0,...,n—1
o} (G for i =0 = 1)

where ( is a primitive n-th root of unit. Hence, the extension k(O) equals C(z,y) = k(z,y).
Consider the tower of field extension k(x) C k(x,y") C k(z,y). Since k(z) coincides with
C(x,y™ + y%) and k(z,y™) with C(z,y™), the multiplicativity of the degree of a field extension
yields

[£(0) : k(z)] = [C(z,y) : C(a,y")] x [C(z,y") : C(z,y" + yln)] =nx2.

Indeed, since x and y are algebraically independent over C, the element y" is not a m-th power
in C(z, y") for m dividing n. Thus, the minimal polynomial of y over the field C(z,y") is Y —y"
so that [C(x,y) : C(z,y™)] equals n. Moreover, since y™ does not belong to C(z,y™ + y%), its
minimal polynomial over the later field is Y2 — (y" + y%)Y + 1. Thus, G; € Aut,(O) because
G, is a dihedral group of size 2n and Aut,(O) is Sa, by the above description.

6. THE ALGEBRAIC KERNEL CURVE AND ITS COVERING

In this section, we present an informal discussion on the geometric framework for walks
confined in a quadrant. For small steps walks, this approach was developed in [KR12, DHRS1S,
DHRS20] and allowed these authors to construct analytic weak invariants [Ras12, BBMR21],
difference equations [KR12, DHRS20] as well as efficient algorithms to compute the order of the
group or some decoupling in the infinite group case [HS21].

For small steps models, this geometric framework amounts to interpret the X and Y-symmetries
of the polynomial K (X,Y,t) as automorphisms of a certain algebraic curve. For large steps mod-
els, we shall see that this interpretation is still valid when the orbit is finite but might be no
longer true for an infinite orbit. Our intention in this section is to introduce a geometric frame-
work and not to give a complete and systematic study of this geometric setting for large steps
walks which is a whole subject in its own right.

Though the kernel polynomial K (XY, ) is irreducible over Q(¢)[X, Y], it might be reducible
over Q(t), the algebraic closure of Q(t). For small steps walks, Proposition 1.2 in [DHRS21]
characterizes the models, called degenerate, whose associated kernel polynomial is reducible
over Q(t). These small steps models correspond to the univariate cases described in Section 2.2
plus the two cases where the step polynomial S(X,Y’) is either a Laurent polynomial in XY or
in X/Y. The generating function Q(X,Y,t) of a degenerate model with small steps is always
algebraic over Q(X,Y,t). One could wonder if the degenerate models in the large steps situation
still coincide with the univariate cases described in Section 2.2 and are therefore algebraic. The
question of the reducibility of the kernel polynomial over Q(t) requires some substantial work
and we leave it for further articles. Thus, we assume from now on that the kernel polynomial
is irreducible of positive degree d, = my, + M, (resp. dy = my + M,) in X (resp. in Y) in the
notation of Section 2.2.

Let us fix once for all a complex transcendental value for ¢ so that Q(t) embeds into C. We
denote by P!(C) the complex projective line, that is, the set of equivalence classes [ag : a1] of
elements (g, a1) € C? up to multiplication by a non-zero scalar. The projective line P*(C) can
be identified to CU{oo} where C = {[ap : 1] with a9 € C} and oo is the point [1 : 0]. We define
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the kernel curve E; as follows.
Ey = {([zo : z1], [yo : 1)) € PI(C) X PI(C) | K(ﬂfo,wl,yo,ylvt) = 0},

where K (xq,r1,%0,y1,t) is the homogeneous polynomial defined by x‘lixyfyf( (;—(1’, z—‘l),t) (see
[DHRS21, Section 2] for the small steps case). The kernel curve E; C PY(C) x P(C) is a
projective algebraic curve. It is naturally equipped with two projections 7, : E; — PL ([zo :
z1), (Yo : y1]) — [xo : 1] and 7, : By — IP’;, ([xo : x1], [yo : v1]) — [yo : y1] where the notation
IF’;,IF’:}/ emphasizes the variable on which one projects. The curve F; is irreducible by our as-

sumption on K. If we denote by Sing its singular locus, that is, the set of points of E; at which
the tangent is not defined, its genus is given by the formula

(6.1) oE) =1+ dydy — dy—dy— 3 30 ORI 2L
PeSing i

where m;(P) is a positive integer standing for the multiplicity of a point P, that is, for every
¢ < m;(P), the partial derivatives of K of order ¢ vanish at P [Har77, Exercise 5.6, Page 231-232
and Example 3.9.2, Page 393].

Example 6.1. The kernel polynomial associated to the model Gy is K(X,Y,t) = XY — (1 +
XY? + X2 + X3Y? + AX?%Y) One can easily check that the algebraic curve F; corresponding
to the model Gy is smooth™, so that its genus equals 2=1+ 3.2 — 3 — 2.

If the curve E; is smooth, it can be endowed with a structure of compact Riemann surface
(see [GGD12, Example 1.46]). We recall that the function field C(E) of an irreducible projective
curve E defined by some irreducible polynomial F'(X,Y) is the fraction field of the C-algebra
C[X,Y]/(F) where (F) is the polynomial ideal generated by F. The following categories are
equivalent

e the category of smooth projective curves F over C and non-constant morphisms,

e the category of finitely generated field extensions C(E) of C of transcendence degree
one and morphisms of field extensions,

e the category of compact Riemann surfaces F and their morphisms [GGD12, Remark
1.94 and Proposition 1.95].

When the projective curve E} is singular, any automorphism of its function field corresponds
to a birational transformation of the curve E; but, for simplicity of presentation, we assume from
now on that E; is smooth. The above equivalence of categories applied to the two projections
Tz, Ty implies that C(E;) is a field extension of C(z) = C(P}) and of C(y) = C(PP,).

When the model is with small steps, the curve E; is of genus one if E; is smooth (see
[DHRS21, Proposition 2.1]). Moreover, the field C(E;) is an extension of degree 2 of the
fields C(x) and C(y) and thereby a Galois extension of these two fields. The Galois groups
Gal(C(Ey)|C(z)) (resp. Gal(C(E})|C(y))) are cyclic of order two. Their generators correspond
via the aforementioned equivalence of categories to two automorphisms ®, ¥ of F; which are
respectively the deck transformations of the projections from E; to PL and to IP’;. These two
automorphisms coincide on a Zariski open set of E; N C? with the two birational involutions
defined in Section 3.

When the model has at least one large step, that is, d; or d, is strictly greater than 2, and
the curve E is irreducible and smooth, (6.1) yields that the genus of E; is strictly greater than

**This means that E; has no singular point. Otherwise, one says that the curve is singular.
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one. Hurwitz’s Theorem [GGD12, Theorem 2.41] implies that the group of automorphisms of
FE;, as the group of automorphism of any algebraic curve of genus strictly greater than one, is
of finite order bounded by 84(g(E:) — 1). Moreover, the function field C(E}) is in general not a
Galois extension of C(x) and of C(y) as illustrated in th following example.

Example 6.2. In the notation of Example 3.11, the field C(E;) = C(x,y) associated to the
model Gy is not Galois and is a proper subextension of the Galois extension C(O) = C(z, y, 2).

If the genus of the curve E; is strictly greater than one, the same holds for any any cover
M of E; so that the group of automorphisms Aut(M) of any cover M of E; is finite [GGD12,
Theorem 1.76]. Therefore if the curve E; is smooth, irreducible and the model has at least one
large step, Theorem 4.3'T shows that the existence of a Galois extension M of C(z) and C(y) is
equivalent to the finiteness of the orbit of the model. Indeed, the condition that Gal(M|C(x))
and Gal(M|C(y)) generate a finite group of Aut(M) is automatic since Aut(M) which is iso-
morphic to Aut(M) by the above equivalence of category is finite. Applying once again the
equivalence of category, one finds that the Galois group Gal(M|C(z)) (resp. Gal(M|C(y))) cor-
responds to the group of deck transformations of m, (resp. m,). We summarize this discussion
in the following Theorem.

Theorem 6.3. Assume that the model has at least one large step and that the curve Ey is
irreducible and smooth. The following statements are equivalent:

e the orbit of the walk is finite,
e there exists a cover M of E; which is a Galois cover of PL and le/'

In that case, the group of the walk G is isomorphic to the group of automorphims of M generated
by the deck transformations of the covers M — PL and M — IP’ZlJ.

Under the assumption of Theorem 6.3, one can generalize the notion of group of the walk
defined by the two birational involutions ®, ¥ for small steps models (see Section 3 ) to the
large step framework if and only if the orbit of the walk is finite. If the orbit is finite, the group
of the walk is generated by the deck transformations of the two projections of M onto P., IP’%,.
It is in general no longer a group of automorphisms of the kernel curve E}, unless F; equals M,
which happens only in very restricted situations. If the orbit is infinite and the curve F; is of
genus greater than one, one cannot realize the group of the walk as a group of automorphisms
of an algebraic curve which covers Ej.

APPENDIX A. SOLVING THE MODEL G)

In Section 2.2, we illustrate how the construction of pair of Galois invariants and Galois
decoupling pairs for the model Gy allows us to construct explicit equations in one catalytic
variable satisfied by the sections Q(X,0) and Q(0,Y). Theorem 3 in [BMJO06] implies that
these sections are algebraic which yields the algebraicity of the generating function Q(X,Y).
However, [BMJ06] actually gives a general method to obtain explicit polynomial equations for
the solutions of equations in one catalytic variable.

In this section, we follow this method to provide an explicit polynomial equation for the
excursion generating function Q(0,0) attached to the model Gy. All the computations can be
found in the Maple worksheet and we give here their guidelines.

tTwhich still holds if one replaces k by C.
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We start from the functional equation obtained for Q(0,Y"), because it is the simplest of the
two and we recall below its canonical form, with F/(Y) = Q(0,Y):

FY)=1+ t<t2YF(Y) (A<1>F(Y))2 +MF(Y) AV F(Y) + ¢ (A<1>F(Y))2
+2aAFY)APEY)+YFY)+ MO EY) + 200 F(Y) )

where A is the discrete derivative: AG(Y') = w. Besides F(Y), there are three unknown
functions: F(0) (the excursions series), F’'(0) and F”(0). The above equation can hence be
rewritten as

(A1) P(F(Y), F(0), F'(0), F"(0),t,Y) = 0,

with P(zg, 21,22, 23,t,Y) a polynomial with coefficients in Q(\).

The method of Bousquet-Mélou and Jehanne consists in constructing more equations from
(A.1). For that purpose, we search for fractional power series ¥ Y;’s that are solutions of (A.1)
and of the following equation

(A:2) (91, P) (F(Y;), F(0), F'(0), F"(0),£,Y;) = 0.

Then the paper [BMJ06] points out that any such solution is also a solution of the following
equation

(A.3) Oy P) (F(Y), F(0), F'(0), F(0),t,Y;) = 0.

Moreover, these solutions are double roots of D(F(0),F'(0), F"(0),t,Y) the discriminant of
P with respect to zp [BMJ06, Theorem 14]. If there are enough fractional power series Y;’s
(at least the number of unknown functions), then the result of [BMJO06] provides “enough”
independent polynomial equations P;(Xy, X1, X2) relating the unknown functions (here F(0),
F’(0) and F”(0)) so that the dimension of the polynomial ideal generated by the P;’s is zero.
This shows that one can eliminate these multivariate polynomial equations to find a one variable
polynomial equation for each of the unknown series.

Eliminating F”(0) between (A.1) and (A.3), one finds a first equation between Y; and F(Y;):

—2F(Y))tY;* + F(0)* °Y; — 4F (0)F(Y;) 1Y + 3Y; *F (Y;)? — F(0)AtY;

A4
(A-4) + F(Y;)M\Y; + F(Y;) Y33 — 2F'(0)tY; — Yi® — 4tF(0) + 4F (Y;)t = 0.

Now, eliminating F'(Y;) between (A.4) and (A.1), and removing the trivially nonzero factors,
we obtain the following polynomial equation for the Y;’s:

(A.5) 2 Y+ \Y; — Vi3 4+ 2t = 0.

Using Newton polygon’s method, we find that, among the four roots of the irreducible polyno-
mial above, exactly three are fractional power series Y7, Yo and Y3 that are not formal power
series. The last root, denoted Yy, is a Laurent series with a simple pole at ¢ = 0. Moreover,
(A.5) yields
. Yo
Yt Y+ 2

A fractional power series is an element of C[[t*/4] for some positive integer d.
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so that Q(\, ) C Q(\, Yp). Replacing t by the above expression in (A.5) and factoring by Y —Yj,
we obtain the minimal polynomial M (Yp,Y) satisfied by the series Y7, Y2, Y3 over Q(A, Yp) as:

(A.6) M(Yy,Y) = 2Yp3Y3 — Yo2AY — YoAY?2 — 2Y,2 — 2YpY — 2Y2

This polynomial of degree 3 is irreducible over the field Q(\, Yy) € Q(N)((¢)) because other-
wise one of the series Y;’s would belong to Q(\, Yy) which is impossible since the Y;’s are not
Laurent series in ¢. Since Q(\, Yy, F(0), F'(0), F”(0)) € Q(A)((¢)), the same argument shows
that M (Yp,Y') remains irreducible over Q(\, Yy, F(0), F'(0), F"(0)).

Now, since the Y;’s are double roots of D(F(0), F’(0), F"(0),t(Yp),Y), the polynomial M (Yp, Y)?
must divide D(F(0), F'(0), F”(0),t(Yp),Y) so that the remainder R(Y) in the euclidian divi-
sion of D(F(0), F'(0), F"(0),t(Yy),Y) by M(Yp,Y)? should be identically zero. The polynomial
R(Y) has degree at most 6 (the discriminant has degree 12 and M (Yp, Y)? has degree 6), and
we write it as

RY)=¢€g+e1Y +eY?+e3V3 4 e,V 4 e5Y5 45

with e; a polynomial in Yp,F(0),F’(0) and F”(0). Hence, each of its coefficient gives an equation
e; = 0 on the unknown functions in terms of Y. We first eliminate F”(0) between ey and e;
which yields an equation eg between Yy, F(0), F'(0). We get another such equation e; by
eliminating F”(0) between ey and eg. Finally, eliminating F’(0) between eg and e7 yields an
equation e; over Q(A) between Yy and F'(0). The polynomial defining the equation ey factors
into two nontrivial irreducible factors. To decide which of these factors is a polynomial equation
for F'(0), we compute the first terms of the t-expansion F'(0) = @Q(0,0,¢) (which is easy from
the functional equation for Q(X,Y")) and of Yj(¢) (thanks to the Newton method) and we plug
these approximations in the two factors of e;. One finds that F(0) is algebraic of degree 8
over Q(N\)(Yp). One eliminates Yy thanks to its functional equation and, thanks to Maple, one
verifies that F'(0) is algebraic of degree 32 over QQ(¢) (see the Maple worksheet). This gives the
following result:

Proposition A.1. The series Q(0,0) is algebraic of degree 8 over Q(X)(Yo) (for any \). Hence,
as Yy is of degree 4 over Q(N)(t), we conclude that Q(0,0) is an algebraic series of degree 32
over Q(N)(t).

We note that any step of our procedure remains valid if one specializes A to 0 and 1 so that the
excursion series Q(0,0) of the models Gy and G; remains algebraic of degree 32 over Q(\)(Yp).

APPENDIX B. FORMAL COMPUTATION OF DECOUPLING WITH LEVEL LINES

As explained in Section 5.5, the evaluation of a regular fraction at an arbitrary pair of elements
in the orbit is expensive from a computer algebra point of view. We describe below a family of
0-chains called symmetric chains which are easy to evaluate on. We will then show that the level
lines introduced in Section5.5 can be described explicitely in terms of these symmetric chains.
Thus, under Assumption 5.31, Theorem 5.34 yields an expression of the decoupling in the orbit
in terms of symmetric chains which provides a powerful implementation of the computation of
the Galois decoupling of a fraction (see the Sage worksheet).

B.1. Symmetric chains on the orbit.
Definition B.1. Let P(X) be a square-free polynomial in C(z,y)[Z]. We define two finite

subsets of K x K to be V}(P) = {(u,v) € Kx K| P(u) = 0A S(x,y) = S(u,v)} and VZ(P) =
{(u,v) e KxK|P(v) =0A S(z,y) = S(u,v)}.



GALOISIAN STRUCTURE OF LARGE STEPS WALKS IN THE QUADRANT 49

We recall here a well known corollary of the theory of symmetric polynomials (see [Lan02,
Theorem 6.1]). Let P(X) be a polynomial with coefficients in a field L and let x1, ..., z, be its
roots taken with multiplicity in some algebraic closure of L. If H(X) is a rational fraction over
L with denominator relatively prime to P(X), then the sum ), H(z;) is a well defined element
of L. There are numerous effective algorithms to compute such a sum based on resultants, trace
of a companion matrix, Newton formula...(see for example [BFSS06]).

We extend these methods to the computation of s =37, ,)cy1(py H(u,v,1/5(z,y)) for P a
square-free polynomial such that V1(P) C O and H(X,Y,t) a regular fraction as follows. By
definition of V}(P), we can rewrite s as the double sum

s = Z Z H(u,v,1/S(z,y)).

u / P(u)=0 U/I}(u,v,l/S(m,y))ZO

Consider the sum Zv/f{(z 01/8(2,))=0 H(z,v,1/S(x,y)). It is a well-defined element of k(x)
which can be computed efficiently since it is a symmetric function on the roots of the square-free
polynomial K (z,Y,1/S(z,y)). Let 3(X) be in k(X) such that

S = S H@u1/S@y).
v/ K (@0,1/8(,)=0
Since the group of the orbit G acts transitively on the orbit and preserves the adjacencies, it is
easily seen that, for any right coordinate of the orbit u, the sum Zv/f((u 0.1/8(2.4))=0 H(u,v,1/S(z,y))
coincides with X(u). Then, s =3,/ p(,)—o 2 (1) is of the desired form and can also be computed

efficiently since it is a symmetric function on the roots of the square-free polynomial P. The
process is symmetric for V2(P). These observations motivate the following definition.

Definition B.2. A symmetric chain is a C-linear combination of 0-chains of the form ) | acvi(p) @
with P a square-free polynomial such that Vi(P) C O.

From the above discussion, any regular fraction H(X,Y,t) can be evaluated on a symmetric
chain in an efficient way.

B.2. Level lines as symmetric chains. We now motivate the choice of level lines introduced
in Section 5.5, by showing they are symmetric chains which one can construct efficiently. We
recall that the square-free part of a polynomial P in K[Z] is the product of its distinct irreducible
factors and can be computed as P/ ged(P, P').

Now, let P be a polynomial in C(z,y)[Z]. Then we denote by Ry (P) the square-free

part of Res(K (X, Z,1/5(z,y)), P(X), X) in C(z,y)[Z]. Similarly, we define Rz, (P) to be the

square-free part of Res(K(Z,Y,1/S(x,y)),P(Y),Y) in C(z,y)[Z]. The following lemmas are
straightforward so that we omit their proofs.

Lemma B.3. Let P(Z) be a polynomial in C(x,y)[Z]. Then,
VQ(RI?X(P)) ={ac KxK|3d € VY(P), a ~¥ d}
and

V(R (P)) ={a e KxK|3d € VZ(P), a ~" d'}.

Lemma B.4. Let i be a positive integer. Any element a of X; is adjacent to some element a’
of X;_1. Moreover, if i is odd then a ~Y a’ and if i is even then a ~* a’.
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Now, we construct by induction a sequence of square-free polynomials (Pf(Z )); € C(z,y)[Z]
which satisfy the equations

VI(PQQCZ) = Xy, UAX;_1 and VQ(PQZCH_I) = Xojr1 U Xy, for all 4.

We set P¥(Z) = Z — x so that VI(P§) = A&y C O. Now, assume that we have con-
structed the polynomials Pf(Z ) for j =0,...2i. By Lemma B.3 and the induction hypothesis,

V(R 7 x(P5;)) is composed of all the vertices that are y-adjacent to some vertex in &Xp; UX; 1.

Moreover, by the induction hypothesis, VQ(P;Z-A) = Xp;—1 UAXy;. Hence, by Lemma B.4 we find
that

VAR (P5) \ V(P35 1) = Xaiv1 U Xai.
Hence, if we define Pg; ; to be Rz (Ps;) divided by its greatest common divisor with Pj;_,,
then Pj;,; is square-free, and the above equation ensures that Vi(Pg 41) = Ao U Xy We

construct Py;, , using similar arguments. Analogously, one can construct a sequence of square-
free polynomials (P/(Z)); € C(v,y)[Z] which satisfy

VHPY) = Yo UYaio1 and V(P 1) = Vois1 U Vs for all 4.

starting from Py (Z) = Z —y.

As the z-level lines are disjoint sets of vertices, the 0-chain associated with X;11 U A is just
the sum X;11 + X;. Hence, as Xy and all X;;; + X; are symmetric chains, all the X; are
symmetric chains as well. The same argument holds for y-level lines. Note that, as expected,
the coefficients of the P are actually in k(z) and the coefficients of the P/ are in k(y). By
Proposition 3.23, one can identify k(x) (resp. k(y)) with C(X,t) (resp. C(Y,t)) by identifying
1/S(z,y) with ¢, z with X and y with Y so that the coefficients P* (resp. P}) can be considered
in C(X,t) (resp. C(Y,1)).

APPENDIX C. SOME MORE DECOUPLING OF ORBIT TYPES

C.1. The case of 51/2 We represent below the x and y-level lines for the orbit type 51/2:

We find the following automorphisms: 7Y = (12)(38)(47)(56)(911) the vertical reflection,
T8 =(012)(357)(468)(91011) the 2?” rotation. One can check that their action is transitive
on the z-level lines. As the situation is completely symmetric for y-level lines, Assumption 5.31
holds for this orbit type. Thus, according to Theorem 5.34 and taking w = % (Xo+ X2 + X3),
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the decoupling equation is
_6+3<X0 X1> 6+3(Y0 i

@==3\3"%)" 12 3‘6)“’*“

(X0 X1 Xo Yo 1
_<3 24+12>+(4 8>+0‘

C.2. The case of O13. We represent below the x and y-level lines for the orbit type Ois.

We present some elements belonging to the groups Aut,(O) and Aut,(O):

T =(12)(611)(45)(710)(89)(1315)(1417)(1216) the vertical reflection,

T = (012)(345)(679)(81011)(121314)(151617) the 2 rotation for dy(v) < 2 + rotating

each "ear”,

¥ =(03)(16)(211)(412)(516)(713)(814)(917)(1015) the horizontal reflection,

T8 = (1517)(810)(45)(79)(1314)(12) the pinching of the upper ”arms”.

The reader can check that these elements act transitively on their respective level lines which

proves Assumption 5.31 for O15. Thus, according to Theorem 5.34 and taking w = % (Xo+ X1+ Xo+ X3),
the decoupling equation is

8 (Xz Xs) N 44448 <Xo X1> 6 <Y2 Yg) N 3+6+6 <Y0 Y:

@) =57 "3 18 2 4) 7 186 6 18 3_3>+”+O‘

(X0 X1 X 5Y, 5 Yo Vi
_<2 6+6)+<18 8 "8 18) ¢

C.3. Fan models. We study a class of models derived from the ones arising in the enumeration
of plane bipolar orientations (see [BMFR20]). The fan models are derived from those introduced
in [BMFR20, Equation (7)] by a horizontal reflection.

Definition C.1. For i > 0, define V;(X,Y) = Zogjgi XY=, If z,...,2, are complex

weights, with z, being nonzero, we define the p-fan to be the model with step polynomial

1
S(XY) = o + > AVi(X,Y).
1<p
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By [BBMM21, Proposition 3|, the orbits of models related to one another by a reflection are
isomorphic so that one can directly use the orbit computations of Proposition 4.4 in [BMFR20]
to compute the orbit of a p-fan.

Proposition C.2. Let xo,...,z, be defined as the roots of the equation S(X,y) = S(x,y) with
xo =« and xpy1 = y. Moreover, for 0 <i < p+1, denote y; = x;.

In particular, yp,+1 =y. Then the pairs (x;,y;) with i # j form the orbit of the walk for the
p-fan.

Note that all these models have small backwards steps and that they all have an X/Y
symmetry. As a result, the orbit is of size (p + 2)(p + 1), and the cardinalities of the level lines
are |[Xo| =p+ 1, |2 = p+ 1 and |X1| = p(p+ 1). The y-level lines are symmetric. Below is
a depiction of this orbit type, with the indices ¢ and j satisfy 0 < i £ j < p + 1. Note that
the orbit of the p-fan contains a bicolored square, hence no decoupling of XY is possible (see
Example 5.6).

Xo X1 Xy
Mo (%0, Yp41) (%4, Ypt1)
W (x0,y;) (zi,Y5) — (z4,%0)
%) (pr+17yj) — (xp+1,y0)

The groups Aut,(O) and Aut,(O) contain in particular the following family of automor-
phisms ¢g @ (z;,9;) = (o(z:),7(y;)) with o and 7 some permutations such that o(zo) = o,
b (xiyy;) — (0(2;),7(y;)) with o and 7 some permutations such that 7(yp+1) = yp+1. This
family of automorphisms acts transitively on the level lines proving Assumption 5.31. Thus
using Theorem 5.34 we obtain the decoupling equation of (z,y) as

(l’,y) =

(p+1)+p(p+1)<Xo X ) (p+1)+p(p+1)(Yo N
(p+D+2) \p+1 pp+1) (p+DpE+2) \p+1 pp+1)

Xo X1 X9 Yo Y1
B <p+1 D T2 <p+1><p+2>> " <p+2 ‘p<p+2>> i

>+w+a
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APPENDIX D. COMPUTATION OF A (GALOIS GROUP : HADAMARD MODELS

Consider S(X,Y) = P(X)Q(Y) + R(X) a Hadamard model, with PR and @ nonconstant
Laurent polynomials over C. We first note that the pair (%, Q(Y)) is a pair of nontrivial

Galois invariants, hence the orbit of a Hadamard model is always finite by Theorem 4.3. One
can also easily describe its field of Galois invariants.

Proposition D.1. The field of Galois invariants of a Hadamard model given by S(X,Y) =
P(X)Q(Y) + R(X) coincides with k(Q(y)).

Proof. Writing Q(Y) = A(Y)/B(Y) with A and B relatively prime, we know that the right coor-
dinates of the orbit are the roots of the polynomial 1, (Y) = B(Y) — A(Y)Q(y) € k(Q(y))[Y] C
kinv[Y]. Thus, by Section 4.3, the coefficients of this polynomial generate the field of Galois
invariants, implying that k(Q(y)) C kinv C k(Q(y)), which shows the claim. O

The form of the step polynomial of Hadamard models is a strong constraint on the orbit
which has the form of a Cartesian product as described below.

Proposition D.2 (Proposition 3.22 in [BBMM21]). The orbit of a Hadamard model given by
S(X,Y) = P(X)Q(Y) + R(X) is of the form x x y where x = xg,...,Tm—1 the m distinct
solutions z; of P(X)Q(y) + R(X) = P(z)Q(y) + R(z) and y = yo,...,Yn—1 the n distinct
solutions y; of Q(y) = Q(Y'). Hence, the field k(O) is equal to C(x,y).

Our goal in the rest of this section is to give an explicit description of the group of the walk
for a Hadamard model when the step polynomial is of the form S(X,Y) = Q(Y) + R(X) or
P(X)Q(Y). In that situation, we shall prove that the group of the walk is a direct product of
two simple Galois groups.

Proposition D.3. Consider a Hadamard model with step polynomial of the form Q(Y)+ P(X)
or P(X)Q(Y). The following holds.

o The field kiny is C(P(z),Q(y)).

e In the notation of Proposition D.2, the elements of x satisfy P(x;) = P(x) and the
field extensions C(x)|C(P(x)) and C(y)|C(Q(y)) are both Galois with respective Galois
groups H, and H,.

e The group of the walk Gal(k(O)|kiny) is isomorphic to Hy x H,.

Before proving Proposition D.3, we recall some terminology. We say that two field extensions
L|K and M|K, subfields of a common field Q, are algebraically independent if any finite set
of elements of L, that are algebraically independent over K, remains algebraically independent
over M. We say that L|K and M|K are linearly disjoint over K if any finite set of elements
of L, that are K-linearly independent, are linearly independent over M. The field compositum
of L and M is the smallest subfield of Q that contains L and M. Finally, we say that L|K is
a regular field extension if K is relatively algebraically closed in L and L|K is separable. We
recall that K is relatively algebraically closed in L if any element of L that is algebraic over
K belongs to K. Note that in our setting, all fields are in characteristic zero so L|K is always
separable.

Proof. The proof of the first two items is obvious. First, let us prove that C(x, Q(y))|C(P(z), Q(y))
is Galois with Galois group isomorphic to H,. We remark that since z and y are algebraically
independent over C, the field extension C(P(z), Q(y))|C(P(x)) is purely transcendental of tran-
scendence degree one, hence regular. Since C(x)|C(P(x)) is an algebraic extension, the element
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Q(y) remains transcendental over C(x). Thus, the field extensions C(x) and C(P(z),Q(y)) are
algebraically independent over C(Q(y)). Thus, by Lemma 2.6.7 in [FJ23], the fields C(x) and
C(P(x),Q(y)) are linearly disjoint over C(P(zx). Then, the field C(x,Q(y)) that is the composi-
tum of C(x) and C(P(z),Q(y)), is Galois with Galois group isomorphic to H, (see page 35 in
[FJ23]). Analogously, one can prove that C(y, P(x))|C(P(x)) is Galois with Galois group H,.

To conclude, we note that the field extension C(x)|C is regular of transcendence degree 1.
Since z is transcendental over C(y), the fields extensions C(x) and C(y) are algebraically in-
dependent over C and therefore linearly disjoint over C by Lemma 2.6.7 in [FJ23]. By the
tower property of the linear disjointness (Lemma 2.5.3 in [FJ23]), we find that C(x,Q(y)) is
linearly disjoint from C(y) over C(Q(y)). Using once again the tower property, we conclude
that C(x,Q(y)) and C(y, P(z)) are linearly disjoint over kiny = C(P(z),Q(y)). Lemma 2.5.6
implies that the following restriction map is a group isomorphism:

G = Gal(C(x,y)|C(P(z),Q(y))) — Gal(C(x,Q(y))|C(P(z),Q(y))) x Gal(C(y, P(z))|C(P(z), Q(y)))
o — (olexeu) oley,P@)-

By the above, we conclude that G is isomorphic to H, x H,. (I

APPENDIX E. OTHER ALGEBRAIC MODELS

In the classification of models with small steps, four of them were proved algebraic. Among
them, the so called Gessel Model, given by the Laurent polynomial (1+1/Y)/X + (1+Y)X.
It was a notoriously difficult model to study, and the first known proof of algebraicity of its
full generating function used heavy computer algebra (see [BK10]). Among other proofs of this
result, one relied on the general strategy developped in [BBMR21] as presented in Section 2. It
is noteworthy that no purely combinatorial proof of this result yet exists.

In a private communication, Mireille Bousquet-Mélou suggested that we explore with our
tools a new family of large steps models (#,,), which she expected to have a finite orbit for any
non-negative integer n. These models are obtained from the Gessel model by stretching the two
rightmost steps. More precisely, they are defined through the following Laurent polynomial:

Hy(X,Y)=(14+1/Y)/X + (1+Y)X"

Unfortunately, unlike the Gessel model (#1), we checked that the fraction XY does not admit
a decoupling (for n < 4), so it seems unlikely that any of these larger models is algebraic.
Now, Proposition 7.3 in [BBMR21] implies for the Gessel model with small steps that the
fractions of the form X*Y? with a,b > 1 that admit a decoupling are those that satisfy a = b
or a = 2b+ 1. This includes the fraction XY (corresponding to the starting point (0,0)), but
also other starting points, lying on two lines. This result lead us to look for such points, trying
to recover this pattern for the higher H,,. To this end, we investigate systematically the Galois
decoupling of monomials with exponents near the origin allowing to formulate this conjecture.

Conjecture E.1. (1) For n > 2 and a,b > 1, the orbit of H, is finite and the fraction
XY admits a t-decoupling with respect to the model H,, if and only if (a,b) = (n,1)
or (a,b) = ((n+ 1)k, k) for some k.
(2) For (a,b) as above, the generating functions for walks on H, starting at (a — 1,b — 1)
are algebraic.
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Regarding part (1) of Conjecture E.1, it is easy to prove that XY admits a decoupling with
respect to H,, for all n, through the following identity:
X"Y:—l—l— Y _XY(l—tHn(X,Y))
X (Y +1) tX(Y 4+1)
For the other mentioned exponents above, we did not find a general argument. We checked that
the first part of the conjecture holds for n < 5 and 0 < a,b < 10.

Regarding part (2), we apply the strategy presented in Section 2 to prove the algebraicity
of the models H,, with starting points (n,0) and (n — 1,0) and n < 3. This illustrates the
robustness of the strategy and the significance of our systematic method to test decoupling,
allowing to formulate such conjectures (See the Maple worksheet).

REFERENCES

[BBMM21] Alin Bostan, Mireille Bousquet-Mélou, and Stephen Melczer. Walks with large steps in an orthant.
J. Bur. Math. Soc. (JEMS), 23(7):2221-2297, 2021. arXiv:1806.00968 [doi].

[BBMR21] Olivier Bernardi, Mireille Bousquet-Mélou, and Kilian Raschel. Counting quadrant walks via Tutte’s
invariant method. Comb. Theory, 1:Paper No. 3, 77, 2021. arXiv:1708.08215.

[BFSS06] Alin Bostan, Philippe Flajolet, Bruno Salvy, and Eric Schost. Fast Computation of Special Resul-
tants. Journal of Symbolic Computation, 41(1):1-29, January 2006. Hal.

[BK10] A. Bostan and M. Kauers. The complete generating function for Gessel walks is algebraic. Proc.
Amer. Math. Soc., 138(9):3063-3078, 2010. arXiv:0909.1965 [doi].

[BKP20] Manfred Buchacher, Manuel Kauers, and Gleb Pogudin. Separating variables in bivariate polynomial
ideals. In ISSAC’20—Proceedings of the 45th International Symposium on Symbolic and Algebraic
Computation, pages 54—61. ACM, New York, 2020. arXiv:2002.01541.

[BM21] Mireille Bousquet-Mélou. Enumeration of three-quadrant walks via invariants: some diagonally
symmetric models. Canadian Journal of maths, 2021. arXiv:2112.05776.

[BMFR20] Mireille Bousquet-Mélou, Eric Fusy, and Kilian Raschel. Plane bipolar orientations and quadrant
walks. Sém. Lothar. Combin., 81:Art. B81l, 64, 2020. arXiv:1905.04256.

[BMJO06] Mireille Bousquet-Mélou and Arnaud Jehanne. Polynomial equations with one catalytic variable,
algebraic series and map enumeration. J. Combin. Theory Ser. B, 96:623—672, 2006. arXiv:0504018.

[BMM10]  Mireille Bousquet-Mélou and Marni Mishna. Walks with small steps in the quarter plane. In Al-
gorithmic probability and combinatorics, volume 520 of Contemp. Math., pages 1-39. Amer. Math.
Soc., 2010. arXiv:0810.4387 [doi].

[BMPF*22] Mireille Bousquet-Mélou, Andrew Elvey Price, Sandro Franceschi, Charlotte Hardouin, and Kil-
ian Raschel. On the stationary distribution of reflected Brownian motion in a wedge: differential
properties, 2022.

[DHRS18] Thomas Dreyfus, Charlotte Hardouin, Julien Roques, and Michael F Singer. On the nature of the
generating series of walks in the quarter plane. Inventiones mathematicae, 213(1):139-203, 2018.
arXiv:1702.04696.

[DHRS20] Thomas Dreyfus, Charlotte Hardouin, Julien Roques, and Michael F Singer. Walks in the quar-
ter plane: Genus zero case. Journal of Combinatorial Theory, Series A, 174:105251, 2020.
arXiv:1710.02848.

[DHRS21] Thomas Dreyfus, Charlotte Hardouin, Julien Roques, and Michael F Singer. On the kernel curves
associated with walks in the quarter plane. pages 61-89, 2021. arXiv:2004.010355.

[DR19] Thomas Dreyfus and Kilian Raschel. Differential transcendence & algebraicity criteria for the series
counting weighted quadrant walks. Publications Mathématiques de Besangon, (1):41-80, 2019.

[DW15] Denis Denisov and Vitali Wachtel. Random walks in cones. Ann. Probab., 43(3):992-1044, 2015.
arXiv:1110.1254 [doi].

[FIM99] Guy Fayolle, Roudolf Tasnogorodski, and Vadim Malyshev. Random walks in the quarter-plane,
volume 40 of Applications of Mathematics (New York). Springer-Verlag, Berlin, 1999. Algebraic
methods, boundary value problems and applications.

[FJ23] Michael D. Fried and Moshe Jarden. Field arithmetic, volume 11 of Ergeb. Math. Grenzgeb., 3.
Folge. Cham: Springer, 4th corrected edition edition, 2023.


https://arxiv.org/abs/1806.00968
https://doi.org/10.4171/jems/1053
https://arxiv.org/abs/1708.08215
https://inria.hal.science/inria-00000960
http://arxiv.org/abs/0909.1965
http://dx.doi.org/10.1090/S0002-9939-2010-10398-2
https://arxiv.org/abs/2002.01541
https://arxiv.org/abs/2112.05776
https://arxiv.org/abs/1905.04256
http://arxiv.org/abs/math/0504018
http://arxiv.org/abs/0810.4387
http://dx.doi.org/10.1090/conm/520/10252
https://arxiv.org/abs/1702.04696
https://arxiv.org/abs/1710.02848
https://arxiv.org/abs/2004.01035
http://arxiv.org/abs/1110.1254
http://dx.doi.org/10.1214/13-AOP867

56
[Fri78]

[GGD12]

[Gib81]
[Har77]
[HS08]
[HS21]
[KR12]
[Lan02]
[Lipss]
[Mat80]
[MM14]
[MRO9]

[NY23]

[Pop86]
[Ras12]
[Rot15]

[SS19]

[Sza09]

[Tut95]

GALOISIAN STRUCTURE OF LARGE STEPS WALKS IN THE QUADRANT

Michael D. Fried. Poncelet correspondence: finite correspondence; Ritt’s theorem; and the Griffiths-
Harris configuration for quadrics. J. Algebra, 54(2), 1978.

Ernesto Girondo and Gabino Gonzalez-Diez. Introduction to compact Riemann surfaces and dessins
d’enfants, volume 79 of London Mathematical Society Student Texts. Cambridge University Press,
Cambridge, 2012.

Peter J. Giblin. Graphs, surfaces and homology. Chapman and Hall Mathematics Series. Chapman
& Hall, London-New York, second edition, 1981. An introduction to algebraic topology.

Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts
in Mathematics, No. 52.

Charlotte Hardouin and Michael F. Singer. Differential Galois theory of linear difference equations.
Math. Ann., 342(2):333-377, 2008.

Charlotte Hardouin and Michael F. Singer. On differentially algebraic generating series for walks in
the quarter plane. Selecta Math. (N.S.), 27(5):Paper No. 89, 49, 2021. arXiv:2010.0093.

Irina Kurkova and Kilian Raschel. On the functions counting walks with small steps in the quarter
plane. Publ. Math. Inst. Hautes Etudes Sci., 116:69-114, 2012. arXiv:1107.2340 [doi].

Serge Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag, New York,
third edition, 2002.

Leonard Lipshitz. The diagonal of a D-finite power series is D-finite. J. Algebra, 113(2):373-378,
1988.

Hideyuki Matsumura. Commutative algebra, volume 56 of Mathematics Lecture Note Series. Ben-
jamin/Cummings Publishing Co., Inc., Reading, Mass., second edition, 1980.

Stephen Melczer and Marni Mishna. Singularity analysis via the iterated kernel method. Combin.
Probab. Comput., 23(5):861-888, 2014. arXiv:1303.3236 [doi].

Marni Mishna and Andrew Rechnitzer. Two non-holonomic lattice walks in the quarter plane. The-
oret. Comput. Sci., 410(38-40):3616-3630, 2009. arXiv:0701800.

Hadrien Notarantonio and Sergey Yurkevich. Effective algebraicity for solutions of systems of func-
tional equations with one catalytic variable. Séminaire Lotharingien de Combinatoire, 89B-13:1-12,
2023. arXiv:2211.07298.

Dorin Popescu. General Néron desingularization and approximation. Nagoya Math. J., 104:85-115,
1986.

Kilian Raschel. Counting walks in a quadrant: a unified approach via boundary value problems. J.
Eur. Math. Soc. (JEMS), 14(3):749-777, 2012. arXiv:1003.1362.

Joseph J. Rotman. Advanced Modern Algebra, Part 1. Graduate studies in mathematics. American
Mathematical Society, third edition, 2015.

Matthias Schiitt and Tetsuji Shioda. Mordell- Weil lattices, volume 70 of Ergebnisse der Mathematik
und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer, Singapore,
2019.

Tamés Szamuely. Galois groups and fundamental groups, volume 117 of Cambridge Studies in Ad-
vanced Mathematics. Cambridge University Press, Cambridge, 2009.

William Thomas Tutte. Chromatic sums revisited. Aequationes Math., 50(1-2):95-134, 1995.


https://arxiv.org/abs/2010.00963
http://arxiv.org/abs/1107.2340
http://dx.doi.org/10.1007/s10240-012-0045-7
http://arxiv.org/abs/1303.3236
http://dx.doi.org/10.1017/S0963548314000145
https://arxiv.org/abs/math/0701800
https://arxiv.org/abs/2211.07298
http://arxiv.org/abs/1003.1362

	1. Introduction
	2. A step by step proof of algebraicity
	2.1. Walks and functional equation in two catalytic variables
	2.2. Algebraicity strategy

	3. The orbit of the walk and its Galoisian structure
	3.1. The orbit
	3.2. The Galois extension of the orbit
	3.3. The group of the walk
	3.4. Orbit sums

	4. Galois invariants
	4.1. Galois formulation of invariants
	4.2. Existence of nontrivial Galois invariants and finiteness of the orbit
	4.3. Effective construction

	5. Decoupling
	5.1. Galois formulation of decoupling
	5.2. The decoupling of (x,y) in the orbit
	5.3. Pseudo-decoupling
	5.4. Graph homology and construction of the decoupling
	5.5. Effective construction
	5.6. Examples

	6. The algebraic kernel curve and its covering
	Appendix A. Solving the model G
	Appendix B. Formal computation of decoupling with level lines
	B.1.  Symmetric chains on the orbit 
	B.2. Level lines as symmetric chains

	Appendix C. Some more decoupling of orbit types
	C.1. The case of O12"0365O12
	C.2. The case of O18
	C.3. Fan models

	Appendix D. Computation of a Galois group : Hadamard models
	Appendix E. Other algebraic models
	References

